云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 高考数学难点突破_难点37__数形结合思想

高考数学难点突破_难点37__数形结合思想

  • 62 次阅读
  • 3 次下载
  • 2025/6/15 0:59:20

难点37 数形结合思想

数形结合思想在高考中占有非常重要的地位,其“数”与“形”结合,相互渗透,把代数式的精确刻划与几何图形的直观描述相结合,使代数问题、几何问题相互转化,使抽象思维和形象思维有机结合.应用数形结合思想,就是充分考查数学问题的条件和结论之间的内在联系,既分析其代数意义又揭示其几何意义,将数量关系和空间形式巧妙结合,来寻找解题思路,使问题得到解决.运用这一数学思想,要熟练掌握一些概念和运算的几何意义及常见曲线的代数特征.

●难点磁场

1.曲线y=1+4?x2 (–2≤x≤2)与直线y=r(x–2)+4有两个交点时,实数r的取值范围 .

2.设f(x)=x2–2ax+2,当x∈[–1,+∞)时,f(x)>a恒成立,求a的取值范围.

●案例探究

[例1]设A={x|–2≤x≤a},B={y|y=2x+3,且x∈A},C={z|z=x2,且x∈A },若C?B,求实数a的取值范围.

命题意图:本题借助数形结合,考查有关集合关系运算的题目.属★★★★级题目.

知识依托:解决本题的关键是依靠一元二次函数在区间上的值域

实 用 文 档 1

求法确定集合C.进而将C?B用不等式这一数学语言加以转化.

错解分析:考生在确定z=x2,x∈[–2,a]的值域是易出错,不能分类而论.巧妙观察图象将是上策.不能漏掉a<–2这一种特殊情形.

技巧与方法:解决集合问题首先看清元素究竟是什么,然后再把集合语言“翻译”为一般的数学语言,进而分析条件与结论特点,再将其转化为图形语言,利用数形结合的思想来解决.

解:∵y=2x+3在[–2, a]上是增函数 ∴–1≤y≤2a+3,即B={y|–1≤y≤2a+3}

作出z=x2的图象,该函数定义域右端点x=a有三种不同的位置情况如下:

①当–2≤a≤0时,a2≤z≤4即C={z|z2≤z≤4}

要使C?B,必须且只须2a+3≥4得a≥与–2≤a<0矛盾.

12②当0≤a≤2时,0≤z≤4即C={z|0≤z≤4},要使C?B,由图可知:

实 用 文 档 2

必须且只需??2a?3?4

?0?a?2解得≤a≤2

12③当a>2时,0≤z≤a2,即C={z|0≤z≤a2},要使C?B必须且只需

?a2?2a?3解得2<a≤3 ?a?2?④当a<–2时,A=?此时B=C=?,则C?B成立. 综上所述,a的取值范围是(–∞,–2)∪[,3].

12[例2]已知acosα+bsinα=c, acosβ+bsinβ=c(ab≠0,α–β≠kπ, k∈Z)求证:

???2c2?2. a?b2cos2命题意图:本题主要考查数学代数式几何意义的转换能力.属★★★★★级题目.

知识依托:解决此题的关键在于由条件式的结构联想到直线方程.进而由A、B两点坐标特点知其在单位圆上.

错解分析:考生不易联想到条件式的几何意义,是为瓶颈之一.如何巧妙利用其几何意义是为瓶颈之二.

实 用 文 档 3

  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

难点37 数形结合思想 数形结合思想在高考中占有非常重要的地位,其“数”与“形”结合,相互渗透,把代数式的精确刻划与几何图形的直观描述相结合,使代数问题、几何问题相互转化,使抽象思维和形象思维有机结合.应用数形结合思想,就是充分考查数学问题的条件和结论之间的内在联系,既分析其代数意义又揭示其几何意义,将数量关系和空间形式巧妙结合,来寻找解题思路,使问题得到解决.运用这一数学思想,要熟练掌握一些概念和运算的几何意义及常见曲线的代数特征. ●难点磁场 1.曲线y=1+4?x2 (–2≤x≤2)与直线y=r(x–2)+4有两个交点时,实数r的取值范围 . 2.设f(x)=x2–2ax+2,当x∈[–1,+∞)时,f(x)>a恒成立,求a的取值范围. ●案例探究 [例1]设

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com