云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 2018年全国各地中考数学压轴题汇编:函数(山东专版)(解析卷)

2018年全国各地中考数学压轴题汇编:函数(山东专版)(解析卷)

  • 62 次阅读
  • 3 次下载
  • 2025/6/17 17:18:48

解:(1)把A(3,0),B(﹣1,0),C(0,﹣3)代入抛物线解析式得: ,

解得:,

则该抛物线解析式为y=x2﹣2x﹣3; (2)设直线BC解析式为y=kx﹣3,

把B(﹣1,0)代入得:﹣k﹣3=0,即k=﹣3, ∴直线BC解析式为y=﹣3x﹣3, ∴直线AM解析式为y=x+m,

把A(3,0)代入得:1+m=0,即m=﹣1, ∴直线AM解析式为y=x﹣1, 联立得:

解得:,

则M(﹣,﹣);

(3)存在以点B,C,Q,P为顶点的四边形是平行四边形, 分两种情况考虑:

设Q(x,0),P(m,m2﹣2m﹣3),

当四边形BCQP为平行四边形时,由B(﹣1,0),C(0,﹣3), 根据平移规律得:﹣1+x=0+m,0+0=﹣3+m2﹣2m﹣3, 解得:m=1±

,x=2±

当m=1+当m=1﹣

时,m2﹣2m﹣3=8+2时,m2﹣2m﹣3=8﹣2

﹣2﹣2﹣2+2

﹣3=3,即P(1+﹣3=3,即P(1﹣

,2); ,2);

当四边形BCPQ为平行四边形时,由B(﹣1,0),C(0,﹣3), 根据平移规律得:﹣1+m=0+x,0+m2﹣2m﹣3=﹣3+0, 解得:m=0或2,

当m=0时,P(0,﹣3)(舍去);当m=2时,P(2,﹣3),

综上,存在以点B,C,Q,P为顶点的四边形是平行四边形,P的坐标为(1+(1﹣

17.(2018?泰安)如图,在平面直角坐标系中,二次函数y=ax2+bx+c交x轴于点A(﹣4,0)、B(2,0),交y轴于点C(0,6),在y轴上有一点E(0,﹣2),连接AE. (1)求二次函数的表达式;

(2)若点D为抛物线在x轴负半轴上方的一个动点,求△ADE面积的最大值; (3)抛物线对称轴上是否存在点P,使△AEP为等腰三角形?若存在,请直接写出所有P点的坐标,若不存在请说明理由.

,2)或(2,﹣3).

,2)或

解:(1)∵二次函数y=ax2+bx+c经过点A(﹣4,0)、B(2,0),C(0,6), ∴

解得,,

所以二次函数的解析式为:y=,

(2)由A(﹣4,0),E(0,﹣2),可求AE所在直线解析式为y=

过点D作DN⊥x轴,交AE于点F,交x轴于点G,过点E作EH⊥DF,垂足为H,如图

设D(m,∴DF=

﹣(

),则点F(m,

)=

),

∴S△ADE=S△ADF+S△EDF=×DF×AG+DF×EH =×DF×AG+×DF×EH =×4×DF =2×(=∴当m=(3)y=

) ,

时,△ADE的面积取得最大值为

的对称轴为x=﹣1,

设P(﹣1,n),又E(0,﹣2),A(﹣4,0), 可求PA=当PA=PE时,

,PE=

=

,AE=,

解得,n=1,此时P(﹣1,1); 当PA=AE时,解得,n=当PE=AE时,解得,n=﹣2综上所述,

P点的坐标为:(﹣1,1),(﹣1,

),(﹣1,﹣2

).

=

);

,此时点P坐标为(﹣1,

=

,此时点P坐标为:(﹣1,﹣2).

18.(2018?聊城)如图,已知反比例函数y=

(x>0)的图象与反比例函数y=

(x

<0)的图象关于y轴对称,A(1,4),B(4,m)是函数y=连接AB,点C(﹣2,n)是函数y=(1)求m,n的值;

(2)求AB所在直线的表达式; (3)求△ABC的面积.

(x>0)图象上的两点,

(x<0)图象上的一点,连接AC,BC.

解:(1)因为点A、点B在反比例函数y=∴k1=1×4=4, ∴m×4=k1=4, ∴m=1

∵反比例函数y=∴k2=﹣k1=﹣4 ∴﹣2×n=﹣4, ∴n=2

(2)设直线AB所在的直线表达式为y=kx+b 把A(1,4),B(4,1)代入,得解得

(x>0)的图象上,

(x>0)的图象与反比例函数y=(x<0)的图象关于y轴对称.

∴AB所在直线的表达式为:y=﹣x+5

(3)如图所示:过点A、B作x轴的平行线,过点C、B作y轴的平行线,它们的交点分别是E、F、B、G. ∴四边形EFBG是矩形.

则AF=3,BF=3,AE=3,EC=2,CG=1,GB=6,EG=3 ∴S△ABC=S矩形EFBG﹣S△AFB﹣S△AEC﹣S△CBG =BG×EG﹣AF×FB﹣AE×EC﹣BG×CG

  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

解:(1)把A(3,0),B(﹣1,0),C(0,﹣3)代入抛物线解析式得: ,解得:, 则该抛物线解析式为y=x2﹣2x﹣3; (2)设直线BC解析式为y=kx﹣3, 把B(﹣1,0)代入得:﹣k﹣3=0,即k=﹣3, ∴直线BC解析式为y=﹣3x﹣3, ∴直线AM解析式为y=x+m, 把A(3,0)代入得:1+m=0,即m=﹣1, ∴直线AM解析式为y=x﹣1, 联立得:, 解得:, 则M(﹣,﹣); (3)存在以点B,C,Q,P为顶点的四边形是平行四边形, 分两种情况考虑: 设Q(x,0),P(m,m2﹣2m﹣3), 当四边形BCQP为平行四边形时,由B(﹣1,0),C(0,﹣3), 根据平移规律得:﹣1+x=0+m,0+0

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com