云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 第十九讲平面几何中的几个著名定理

第十九讲平面几何中的几个著名定理

  • 62 次阅读
  • 3 次下载
  • 2025/6/4 16:52:09

证 如图3-102,设AD和BE相交于P,作直线CP,交直线AB于F′,由塞瓦定理得

所以 F′B=FB,

即F′与F重合,所以AD,BE,CF相交于同一点.

塞瓦定理的逆定理常被用来证明三线共点.

例3 求证:三角形的三条中线、三条内角平分线和三条高所在的直线分别相交于同一点.

证 (1)如果D,E,F分别是△ABC的边BC,CA,AB的中点,则

由塞瓦定理的逆定理得中线AD,BE,CF共点.

(2)如果D,E,F分别是△ABC的内角平分线AD,BE,CF与边BC,CA,AB的交点,则

由塞瓦定理的逆定理得角平分线AD,BE,CF共点.

(3)设D,E,F分别是△ABC的高AD,BE,CF的垂足.

(i)当△ABC是锐角三角形时(如图3-103),D,E,F分别在BC,CA,AB上,有

BD=ccosB,DC=bcosC,CE=acosc, EA=ccosA,AF=bcosA,FB=acosB, 所以

由塞瓦定理的逆定理得高AD,BE,CF共点.

(ii)当△ABC是钝角三角形时,有

BD=ccosB,DC=bcosC,CE=acosC,

EA=ccos(180°-A)=-ccosA, AF=bcos(180°-A)=-bcosA,

FB=acosB,

所以

由塞瓦定理的逆定理,得高AD,BE,CF共点.

(iii)当△ABC是直角三角形时,高AD,BE,CF都经过直角顶点,所以它们共点.

例4 在三角形ABC的边上向外作正方形,A1,B1,C1是正方形的边BC,CA,AB的对边的中点,证明:直线AA1,BB1,CC1相交于一点.

证 如图3-104.设直线AA1,BB1,CC1与边BC,CA,AB的交点分别为A2,B2,C2,那么BA2:A2C等

于从点B和C到边AA1的垂线的长度之比,即

其中∠θ=∠CBA1=∠BCA1.同理

将上述三式相乘得

根据塞瓦定理的逆定理,得AA1,BB1,CC1共点.

3.斯台沃特定理

定理 △ABC的边BC上任取一点D,若BD=u,DC=v,AD=t,则

证 过A作AE⊥BC,E为垂足(如图3-105),设DE=x,则有

AE2=b2-(v-x)2=c2-(u+x)2=t2-x2,

(若E在BC的延长线上,则v-x换成x-v.)于是得

消去x得

(u+v)2=b2u+c2v-uv(u+v),

这就是中线长公式.

(2)当AD是△ABC的内角平分线时,由三角形的内角平分线的性质

设a+b+c=2p,得

这就是内角平分线长公式.

(3)当AD是△ABC的高时,

AD2=b2-u2=c2-v2.

再由u+v=a,解得

所以

若设AD=ha,则

这就是三角形的高线长公式.当D在BC的延长线上时,用-v代替v,同样可得高线长线公式.

这就是三角形的面积公式.

搜索更多关于: 第十九讲平面几何中的几个著名定理 的文档
  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

证 如图3-102,设AD和BE相交于P,作直线CP,交直线AB于F′,由塞瓦定理得 所以 F′B=FB, 即F′与F重合,所以AD,BE,CF相交于同一点. 塞瓦定理的逆定理常被用来证明三线共点. 例3 求证:三角形的三条中线、三条内角平分线和三条高所在的直线分别相交于同一点. 证 (1)如果D,E,F分别是△ABC的边BC,CA,AB的中点,则 由塞瓦定理的逆定理得中线AD,BE,CF共点. (2)如果D,E,F分别是△ABC的内角平分线AD,BE,CF与边BC,CA,AB的交点,则 由塞瓦定理的逆定理得角平分线AD,BE,CF共点. (3

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com