当前位置:首页 > 第十章 10.1分类加法计数原理与分步乘法计数原理
§10.1 分类加法计数原理与分步乘法计数原理
知识梳理:
1.分类加法计数原理:完成一件事,可以有n类办法,在第一类办法中有m1种方法,在第二类办法中有m2种方法,……,在第n类办法中有mn种方法,那么完成这件事共有N=m1+m2+…+mn种方法(也称加法原理).
2.分步乘法计数原理:完成一件事需要经过n个步骤,缺一不可,做第一步有m1种方法,做第二步有m2种方法,……,做第n步有mn种方法,那么完成这件事共有N=m1×m2×…×mn种方法(也称乘法原理).
3.分类加法计数原理与分步乘法计数原理,都涉及完成一件事的不同方法的种数.它们的区别在于:分类加法计数原理与分类有关,各种方法相互独立,用其中的任一种方法都可以完成这件事;分步乘法计数原理与分步有关,各个步骤相互依存,只有各个步骤都完成了,这件事才算完成. 课前检测:
1.三个人踢毽子,互相传递,每人每次只能踢一下.由甲开始踢,经过3次传递后,毽子又被踢回给甲.则不同的传递方式共有( ) A.5种 B.2种 C.3种 D.4种 答案 B 解析 传递方式有甲→乙→丙→甲;甲→丙→乙→甲.
2.(2013·山东)用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为( ) A.243 B.252 C.261 D.279 答案 B
解析 由分步乘法计数原理知,用0,1,…,9十个数字组成三位数(可用重复数字)的个数为9×10×10=900,组成没有重复数字的三位数的个数为9×9×8=648.则组成有重复数字的三位数的个数为900-648=252.故选B.
3.(2013·福建)满足a,b∈{-1,0,1,2},且关于x的方程ax2+2x+b=0有实数解的有序数对(a,b)的个数为( ) A.14 B.13 C.12 D.10 答案 B
解析 当a=0时,关于x的方程为2x+b=0,此时有序数对(0,-1),(0,0),(0,1),(0,2)均满足要求;当a≠0时Δ=4-4ab≥0,ab≤1此时满足要求的有序数对为(-1,-1),(-1,0),(-1,1),(-1,2),(1,-1),(1,0),(1,1),(2,-1),(2,0).综上,满足要求的有序数对共
有13个,故选B.
4.用数字2,3组成四位数,且数字2,3至少都出现一次,这样的四位数共有________个.(用数字作答) 答案 14
解析 数字2,3至少都出现一次,包括以下情况: “2”出现1次,“3”出现3次,共可组成C14=4(个)四位数. “2”出现2次,“3”出现2次,共可组成C24=6(个)四位数. “2”出现3次,“3”出现1次,共可组成C34=4(个)四位数.综上所述,共可组成14个这样的四位数. 5.五名学生报名参加四项体育比赛,每人限报一项,则报名方法的种数为________.五名学生争夺四项比赛的冠军(冠军不并列),获得冠军的可能性有_____种.答案 45 54 解析 报名的方法种数为4×4×4×4×4=45(种).获得冠军的可能情况有5×5×5×5=54(种). 应用示例:
题型一 分类加法计数原理的应用
例1 高三一班有学生50人,男生30人,女生20人;高三二班有学生60人,男生30人,女生30人;高三三班有学生55人,男生35人,女生20人. (1)从高三一班或二班或三班中选一名学生任学生会主席,有多少种不同的选法? (2)从高三一班、二班男生中,或从高三三班女生中选一名学生任学生会体育部长,有多少种不同的选法? 思维点拨 按班级分类.
解 (1)完成这件事有三类方法:第一类,从高三一班任选一名学生共有50种选法;第二类,从高三二班任选一名学生共有60种选法;第三类,从高三三班任选一名学生共有55种选法,根据分类加法计数原理,任选一名学生任学生会主席共有50+60+55=165(种)选法. (2)完成这件事有三类方法:第一类,从高三一班男生中任选一名共有30种选法;第二类,从高三二班男生中任选一名共有30种选法;第三类,从高三三班女生中任选一名共有20种选法.综上知,共有30+30+20=80(种)选法.
思维升华 分类标准是运用分类加法计数原理的难点所在,重点在于抓住题目中的关键词或关键元素、关键位置.首先根据题目特点恰当选择一个分类标准;其次分类时应注意完成这件事情的任何一种方法必须属于某一类.
在所有的两位数中,个位数字大于十位数字的两位数共有多少个?
解 方法一 按个位数字分类,个位可为2,3,4,5,6,7,8,9,共分成8类,在每一类中满足条件的两位数分别有1个,2个,3个,4个,5个,6个,7个,8个,则共有1+2+3+4+5+6+7+8=36个.
方法二 按十位数字分类,十位可为1,2,3,4,5,6,7,8,共分成8类,在每一类中满足条件的两位数分别有8个,7个,6个,5个,4个,3个,2个,1个,则共有8+7+6+5+4+3+2+1=36个.
题型二 分步乘法计数原理的应用
例2 有六名同学报名参加三个智力竞赛项目,在下列情况下各有多少种不同的报名方法?(不一定六名同学都能参加) (1)每人恰好参加一项,每项人数不限; (2)每项限报一人,且每人至多参加一项; (3)每项限报一人,但每人参加的项目不限.
解 (1)每人都可以从这三个比赛项目中选报一项,各有3种不同选法,由分步乘法计数原理,知共有选法36=729(种).
(2)每项限报一人,且每人至多参加一项,因此可由项目选人,第一个项目有6种选法,第二个项目有5种选法,第三个项目只有4种选法,由分步乘法计数原理,得共有报名方法6×5×4=120(种).
(3)由于每人参加的项目不限,因此每一个项目都可以从这六人中选出一人参赛,由分步乘法计数原理,得共有不同的报名方法63=216(种).
思维升华 (1)利用分步乘法计数原理解决问题要按事件发生的过程合理分步,即分步是有先后顺序的,并且分步必须满足:完成一件事的各个步骤是相互依存的,只有各个步骤都完成了,才算完成这件事.
(2)分步必须满足两个条件:一是步骤互相独立,互不干扰;二是步与步确保连续,逐步完成.
已知集合M={-3,-2,-1,0,1,2},若a,b,c∈M,则:
(1)y=ax2+bx+c可以表示多少个不同的二次函数; (2)y=ax2+bx+c可以表示多少个图像开口向上的二次函数.
解 (1)a的取值有5种情况,b的取值有6种情况,c的取值有6种情况,因此y=ax2+bx+c可以表示5×6×6=180(个)不同的二次函数.
(2)y=ax2+bx+c的图像开口向上时,a的取值有2种情况,b、c的取值均有6种情况,因此y=ax2+bx+c可以表示2×6×6=72(个)图像开口向上的二次函数. 题型三 两个原理的综合应用
例3 如图所示,将一个四棱锥的每一个顶点染上一种颜色,并使同一
条棱上的两端异色,如果只有5种颜色可供使用,求不同的染色方法总数.
思维点拨 染色问题是常见的计数应用问题,可从选颜色、选顶点进行分类、分步,从不同角度解决问题.
解 方法一 可分为两大步进行,先将四棱锥一侧面三顶点染色,然后再分类考虑另外两顶点的染色数,用分步乘法计数原理即可得出结论.由题设,四棱锥S—ABCD的顶点S、A、B所染的颜色互不相同,它们共有5×4×3=60(种)染色方法.
当S、A、B染好时,不妨设其颜色分别为1、2、3,若C染2,则D可染3或4或5,有3种染法;若C染4,则D可染3或5,有2种染法;若C染5,则D可染3或4,有2种染法.可见,当S、A、B已染好时,C、D还有7种染法,故不同的染色方法有60×7=420(种). 方法二 以S、A、B、C、D顺序分步染色. 第一步,S点染色,有5种方法;
第二步,A点染色,与S在同一条棱上,有4种方法; 第三步,B点染色,与S、A分别在同一条棱上,有3种方法;
第四步,C点染色,也有3种方法,但考虑到D点与S、A、C相邻,需要针对A与C是否同色进行分类,当A与C同色时,D点有3种染色方法;当A与C不同色时,因为C与S、B也不同色,所以C点有2种染色方法,D点也有2种染色方法.由分步乘法、分类加法计数原理得不同的染色方法共有5×4×3×(1×3+2×2)=420(种). 方法三 按所用颜色种数分类.
第一类,5种颜色全用,共有A55种不同的方法;
第二类,只用4种颜色,则必有某两个顶点同色(A与C,或B与D),共有2×A45种不同的方法;
第三类,只用3种颜色,则A与C、B与D必定同色,共有A35种不同的方法. 由分类加法计数原理,得不同的染色方法种数为A55+2×A45+A35=420. 思维升华 (1)应用两个计数原理的难点在于明确分类还是分步. (2)分类要做到“不重不漏”,正确把握分类标准是关键. (3)分步要做到“步骤完整”,步步相连能将事件完成. (4)较复杂的问题可借助图表完成.
如图,正五边形ABCDE中,若把顶点A、B、C、D、E
染上红、黄、绿三种颜色中的一种,使得相邻顶点所染颜色不相同,则不同的染色方法共有( )
A.30种 B.27种 C.24种
D.21种 答案 A
解析 由题意知本题需要分类来解答,首先A选取一种颜色,有3种情况.如果A的两个相邻点颜色相同,有2种情况;这时最后两个点也有2种情况;如果A的两个相邻点颜色不同,有2种情况;这时最后两个点有3种情况. ∴方法共有3(2×2+2×3)=30种. 课堂小结:
方法与技巧 1.分类加法和分步乘法计数原理,区别在于:分类加法计数原理针对“分类”问题,其中各种方法相互独立,用其中任何一种方法都可以做完这件事;分步乘法计数原理针对“分步”问题,各个步骤相互依存,只有各个步骤都完成了才算完成这件事. 2.分类标准要明确,做到不重复不遗漏. 3.混合问题一般是先分类再分步. 4.要恰当画出示意图或树状图,使问题的分析更直观、清楚,便于探索规律.
失误与防范 1.切实理解“完成一件事”的含义,以确定需要分类还是需要分步进行. 2.分类的关键在于要做到“不重不漏”,分步的关键在于要正确设计分步的程序,即合理分类,准确分步. 3.确定题目中是否有特殊条件限制. 课后作业:1、预习 2、册子:
共分享92篇相关文档