云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 2019-2020学年浙江省绍兴市新昌县九年级(上)期末数学试卷

2019-2020学年浙江省绍兴市新昌县九年级(上)期末数学试卷

  • 62 次阅读
  • 3 次下载
  • 2025/5/6 4:27:07

故答案为:小李.

14.【解答】解:∵四边形ABCD内接于圆, ∴∠A+∠C=180°, ∵∠C=2∠A, ∴∠A=60°, ∴cosA=cos60°=故答案为:

15.【解答】解:∠ACB为直角,则△ABC为等腰直角三角形,

C(0,﹣2),则抛物线的表达式为:y=ax2﹣2; CD=6﹣(﹣2)=8,则点B(8,6), 将点B的坐标代入抛物线表达式并解得:a=故抛物线的表达式为:y=令y=0,则x=±4, 故y<0时,﹣4<x<4, 故答案为:﹣4<x<4.

16.【解答】解:如图1中,当点N在CM为直径的圆上时,设DM=AN=x.

x2﹣2,

∵四边形ABCD是矩形,

∴∠ADC=90°,AB=CD=6,BC=AD=8, ∴AC=

=10,

∵∠MAN=∠DAC,∠ANM=∠ADC=90°, ∴△ANM∽△ADC, ∴∴

==

, , ,

解得x=∴DM=

如图2中,当点N在BM为直径的圆上时,设BC与圆的交点为H,连接MH,NH.设DM=AN=y.

∵BM是直径, ∴∠MHB=90°,

∴∠MHC=∠D=∠DCH=90°, ∴四边形CDMH是矩形, ∴CH=DM=y,

∵∠NCH=∠BCA,∠CHN=∠CAB, ∴△CNH∽△CBA, ∴∴

==

, ,

解得y=∴DM=故答案为

, , 或

三、解答题(本大题有8小题,第17-20小题每小题8分,第21小题10分,第22,23小题每小题8分,第24小题14分,共80分,解答需写出必要的文字说明、演算步骤或证明过程.) 17.【解答】解:(1)原式=4×(=3﹣2+1 =2;

(2)设c为线段 a,b的比例中项, 则c2=ab, 即c2=16, 由于 c>0, 故c=4.

18.【解答】解:(1)如图即为Rt△ABC的外接圆,圆心为O;

)2﹣2+1

(2)AB=6,则圆O的半径为3,圆心角∠AOC=120°, ∴扇形AOC的面积为:

=3π.

答:扇形AOC的面积为3π. 19.【解答】解:选择方案二;

∵方案一获奖的概率为,

方案二中出现的可能性如下表所示:

共有9种不同的情况,其中指针落在不同颜色区域的可能性为∵

∴选择方案二.

20.【解答】解:过点C作CH⊥AD于点H,则∠ACH=30,∠DCH=45°, 设AH=x,则AC=2x,CH=HD=解得x=2AC=2x=4

﹣2, ﹣4,CD=4

≈6米,

x,CD=AD=AH+HD=x+

x=4,

∴AB=AC+CB=AC+CD=4

答:这棵大树AB原来的高度是6米.

21.【解答】解(1)∴

, .

(2)另一个错在没有进行分类讨论,如图,过点D作∠ADE=∠ACB, 则△ADE∽△ACB, ∴∴

综合以上可得,DE=

=或. .

  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

故答案为:小李. 14.【解答】解:∵四边形ABCD内接于圆, ∴∠A+∠C=180°, ∵∠C=2∠A, ∴∠A=60°, ∴cosA=cos60°=故答案为:. , 15.【解答】解:∠ACB为直角,则△ABC为等腰直角三角形, C(0,﹣2),则抛物线的表达式为:y=ax2﹣2; CD=6﹣(﹣2)=8,则点B(8,6), 将点B的坐标代入抛物线表达式并解得:a=故抛物线的表达式为:y=令y=0,则x=±4, 故y<0时,﹣4<x<4, 故答案为:﹣4<x<4. 16.【解答】解:如图1中,当点N在CM为直径的圆上时,设DM=AN=x. x2﹣2, , ∵四边形ABCD是矩形

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com