当前位置:首页 > 新课标九年级数学中考复习强效提升分数精华版开放性问题
中考数学复习专题讲座三 开放性问题
一、中考专题诠释
开放型问题是相对于有明确条件和明确结论的封闭型问题而言的,它是条件或结论给定不完全、答案不唯一的一类问题.这类试题已成为近年中考的热点,重在考查同学们分析、探索能力以及思维的发散性,但难度适中.根据其特征大致可分为:条件开放型、结论开放型、方法开放型和编制开放型等四类. 二、解题策略与解法精讲
解开放性的题目时,要先进行观察、试验、类比、归纳、猜测出结论或条件,然后严格证明;同时,通常要结合以下数学思想方法:分类讨论,数形结合,分析综合,归纳猜想,构建数学模型等。 三、中考考点精讲 考点一:条件开放型
条件开放题是指结论给定,条件未知或不全,需探求与结论相对应的条件.解这种开放问题的一般思路是:由已知的结论反思题目应具备怎样的条件,即从题目的结论出发,逆向追索,逐步探求.
例1 (中考?义乌市)如图,在△ABC中,点D是BC的中点,作射线AD,在线段AD及其延长线上分别取点E、F,连接CE、BF.添加一个条件,使得△BDF≌△CDE,并加以证明.你添加的条件是 .(不添加辅助线).
考点: 全等三角形的判定。810360 专题: 开放型。
分析: 由已知可证∠ECD﹦∠FBD,又∠EDC﹦∠FDB,因为三角形全等条件中必须是三个元素,并且一定有一组对应边相等.故添加的条件是:DE=DF(或CE∥BF或∠ECD=∠DBF或∠DEC=∠DFB等);
解答: 解:(1)添加的条件是:DE=DF(或CE∥BF或∠ECD=∠DBF或∠DEC=∠DFB等).
(2)证明:在△BDF和△CDE中 ∵
∴△BDF≌△CDE.
点评: 三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.
考点二:结论开放型:
给出问题的条件,让解题者根据条件探索相应的结论并且符合条件的结论往往呈现多样性,这些问题都是结论开放问题.这类问题的解题思路是:充分利用已知条件或图形特征,进行猜想、类比、联想、归纳,透彻分析出给定条件下可能存在的结论,然后经过论证作出取舍.
例2 (中考?宁德)如图,点E、F分别是AD上的两点,AB∥CD,AB=CD,AF=DE.问:线段CE、BF有什么数量关系和位置关系?并加以证明.
考点: 全等三角形的判定与性质;平行线的性质;平行线的判定与性质。810360 专题: 探究型。
分析: CE和BF的关系是CE=BF(数量关系),CE∥BF(位置关系),理由是根据平行线性质求出∠A=∠D,根据SAS证△ABF≌△DCE,推出CE=BF,∠AFB=∠DEC即可. 解答: CE和BF的数量关系是CE=BF,位置关系是CE∥BF, 证明:∵AB∥CD, ∴∠A=∠D, ∵在△ABF和△DCE中
共分享92篇相关文档