云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 《小学数学疑难问题研究》

《小学数学疑难问题研究》

  • 62 次阅读
  • 3 次下载
  • 2025/6/15 3:17:38

于自然数集不讲究所含元素的顺序,而自然数列中所有的自然数都必须按照从小到大的顺序排列。只要有一处违反了这样的顺序,如0,2,1,3,??,它就不是自然数列。当然,少了一个自然数的数集或数列也不再是自然数集或自然数列。

【自然数列的性质】 自然数列有以下性质:

(1)有始。自然数列是从0开始的。0不是任何其它自然数的继数;

(2)有序。每一个自然数都有且只有一个继数;除了0,每个自然数都有且只有一个先行的数; (3)无限。自然数列是一个无限数列。没有最后的(或者说最大的)自然数。

【扩大的自然数列】 这是一个应该消亡的数学名词。当我们认为“0不是自然数”时,把

1,2,3,??

叫做“自然数列”。而将

0,1,2,3,??

称为“扩大的自然数列”。现在,国家标准重新规定“0是自然数”,因此,后者顺理成章地应该称之为“自然数列”。“扩大的自然数列”作为一个数学名词已经不再需要。

A1—6 “计数”、“记数”、“数数”、“写数”、“读数”各指什么?什么是计数的基本原理?为什么我们的计数制和记数制都是十进制?

【计数(count)】【数数】 “计数”就是“数数”。指的是把一些事物与非负自然数列里的数1,2,3,??建立一一对应的过程。

【计数原理(counting principle)】 计数的基本原理如下: 只要不遗漏、不重复,计数的结果与计数的顺序无关。

【十进制计数法】 计数时,可以一个,一个地数,也可以几个、几个地数。如二个、二个地数;五个、五个地数;十个、十个地数等。二、五、十等都是计数单位。用一(个)、十、百、千、万、??等作为计数单位的计数方法叫做十进制计数法。这时,每十个较低的计数单位等于一个较高的单位。

实际运用十进制计数法时,要从尽可能大的计数单位数起。如数一盘草莓,先十个、十个地数,剩下不足十个时,再一个、一个地数。最后弄清这盘草莓的个数是几个十、几个一。(这里的“几”应该是不大于9的自然数。)运用十进制计数法,我们就可以弄清一个自然数N是由几个一、几个十、几个百、几个千、??组成的。这里的“几”都是不大于9的自然数。用符号表示就是

N?a0?10n?a1?10n?1?a2?10n?2???an?1?10?an,

其中,0<a0≤9,0≤a1,?,an≤9。

【记数】【写数】 “记数”就是“写数”。指的是如何用数字符号将一个数N(或者计数的结果)记录下来。

【十进制记数法】 当我们用十进制计数法弄清了一个数的组成后,就可以按照十进位记数制用数字符号0,1,2,?,9把这个数记录下来。

由于自然数有无限多个,要对每一个自然数都给一个独立的名称和记号是不可能的。现在国际上通用的记数方法是用

- -

5

0,1,2,?,9

分别表示自然数列里的前十个数。其它自然数则用这些数字按“位值原则”表示出来。即每个数字占有一个位置,叫做“数位”。每个数位表示一种计数单位。同一个(0以外的)数字在所记的数里位置不同,所表示的数值也不同。

在所记的数里,从右向左,第一位是个位,第二位是十位,第三位是百位,??。个位的计数单位是一,十位的计数单位是十,百位的计数单位是百,??。如果一个数是由八个百、三个十和五个一组成的。就把它写作835。一般地,如果一个自然数

N?a0?10n?a1?10n?1?a2?10n?2???an?1?10?an,

其中,0<a0≤9,0≤a1,?,an≤9。则此自然数就写作a0a1a2?an?1an。因为每两个相邻数位的计数单位的进率都是十,所以这种记数的方法叫做十进制记数法。

A1—7 “数”和“数字”的区别和联系是什么?

【数字(numerals)】用来记数的符号叫做“数字”。

数和数字是两个不同的概念。数或为单数、或为双数,或为质数、或为合数。数字或为罗马数字、或为阿拉伯数字,或为手写的数字、或为印刷的数字。事实上,数字并不是数,而是表示数的记号。数是数字所表达的内容而不是数字本身。

中国是世界上的文明古国之一。用文字记数在我国已有悠久的历史。早在三千多年前的商代的甲骨文里,就已经记有数字。其中记载的最大的数是“三万”,最小的数是“一”。一、十、百、千、万各有专名。特别是当时已经采用了十进制的记数方法,这和现在世界通用的“十进制记数法”是一致的。

A1—8 说“43”是数而不是数字对吗?

表示数的符号叫做数字。因为“43”是一个数学符号,在十进制记数法中,用来表示由四个十与三个一组成的自然数,所以它是一个数字。是由数字“4”与“3”排成一列组成的“复合数字”。此外,在许多上下文中,43也确实可以表示一个数,由四个十与三个一组成的数。

另一方面,在一定的语言环境中出现的数字“43”,也可以用来表示一个k进制的自然数,即四个k与三个一组成的数。在这里,因为出现了数字“4”,所以k≥5。

总之,“43”既是一个数,也是一个数字。当它在一个语句中出现时,究竟何所指,要看特定的语言环境。

A1—9 “数的组成”、“数的名称”和“数的读写”有什么联系?

【数的组成】 我们在引导学生认识某个范围内的自然数时,首先要认识这些数的组成。如认识一个千以内的数,要弄清它是由几个百、几个十与几个一组成的。可以先用计数单位“百”一百、一百地数。剩下的不足一百个时,再用计数单位“十”十个、十个地数。最后,如果剩下的不足十个,再一个、一个地数。即用十进制计数法弄清数的组成。

- -

6

【数的名称】 每一个自然数的名称都是根据它的组成规定的。为此,制定了根据自然数的组成来为它命名的规则。同时,也制定了按十进制位值原则用数字符号0,1,2,?,9来表示一个自然数的规则(“写数规则”),也就是“十进制记数法”。

所谓“读”,就是根据一个数的符号,说出它的名称;所谓“写”,就是根据一个数的名称写出表示这个数的数字符号。“自然数的读写”就是一个数用自然语言和用符号语言的两种表述之间的相互改写。如图(1—4)所示:

命名规则 数 数的组成

十进制计数法

写数规则

(十进制记数法)

图1—4

数的名称 读 写

数的符号

总之,数的组成是用十进制计数法计数的结果,数的组成是给这个数命名的依据,也是用数字符号表示这个数的依据。因而也是数的读写的基础。可见,数的组成是认数教学的核心问题。

A1—10 “十进制”和“二进制”的相同点和不同点有哪些?

【进位制】 如果在所用的一系列计数单位中,每十个某单位都组成一个和它相邻的较高的单位,即所谓“满十进一”,那么这种计数制就是“十进制”。如果是“满二进一”,就是“二进制”,十进制和二进制都是“进位制”。十和二分别是这两种进位制的基数。进位制的基数可以是大于1的任何自然数。

运用十进制计数法,我们可以将任何一个自然数N 表为

a0?10n?a1?10n?1?a2?10n?2???an?1?10?an

其中,0<a0≤9;0≤a1,?,an≤9。

运用二进制计数法,可将自然数表为

a0?2n?a1?2n?1?a2?2n?2???an?1?2?an

其中,a0=1,0≤a1,?,an≤1。

可见,十进制和二进制都可以将一个自然数分解为不同底数的幂的和。

在十进制记数法中,我们用十种不同的数字0,1,2,?,9按照位值计数法来表示不同的自然数。在二进制记数法中,只用两个不同的数字0,1就能表示任何自然数。表示自然数列中前几个数的二进制数字与十进制数字的对应关系如下表:

十进制数 二进制数 0 0 1 1 2 10 3 11 4 100 5 101 6 110 7 111 8 1000 9 1001 ? ? 因此,作为记数法,他们运用的不同数字的个数不同;表示同一个自然数时,所需数位的个数也不同。

A1—11 “精确数”和“近似数”、“相对误差”和“绝对误差”以及“有效数字”和“可靠数字”有什么区别?什么是科学记数法?(李同贤)

- -

7

【准确数与近似数】 在计数和计算过程中,有时能得到与实际完全相符的数,这些数叫准确数,如某校的数学教师有15人、6×1.2=7.2等等,但在生产、生活和计算中得到的某些数,往往只是接近于准确数,这种数叫近似数。如“某市人口有75万,”75万就是一个近似数。因为在统计一个城市的人口时,由于居民的迁入和迁出,出生和死亡,人口的数目随时都在变化,很难得出准确的人口数。在计算圆周长的公式里,圆周率?可以用3.14代入计算,3.14也是?的近似数。

可见,准确数与近似数主要区别在于是否与实际情况完全相符。

【不足近似值与过剩近似值】 小于准确数的近似值,叫不足近似值;大于准确数的近似值,叫过剩近似值。例如,3.14、3.142分别是圆周率?的不足近似值和过剩近似值。

【误差、绝对误差和相对误差】 准确数A与它的近似值a之差A-a叫做这个近似数的误差,误差的绝对值A?a叫绝对误差。

近似数的绝对误差除以准确数的绝对值所得的商叫做这个近似数的相对误差。

实际计算时,由于准确数往往不得而知,所以只能用近似数的绝对值代替准确数的绝对值来 计算相对误差。

例如,甲、乙两人量边长为1米的正方形的对角线的长度。甲量得的结果是1.41米,乙量得的结果是1.42米。则两人的测量结果的绝对误差分别是:

2?1.41?0.0042?0.0042(米); 2?1.42??0.0058?0.0058(米)

相对误差分别是:

0.00420.0058?0.30%和?0.41%

1.41421.4142绝对误差一般用来比较同一个数量的两个不同近似数的精确度,而相对误差则往往用来比较两个不同数量的近似数的精确度。

【有效数字与可靠数字】 一个近似数,如果绝对误差不超过它末位的半个单位,则从左端开头的第一个非零数字起到末位数字止,所有的数字都叫这个近似数的有效数字。

例如,取?≈3.14,因为??3.14<0.01÷2,所以圆周率的近似值3.14有三个有效数字;如果取?≈3.1416,则??3.1416<0.0001÷2,所以近似值3.1416有5个有效数字。

一个近似数,如果绝对误差不超过它末位的一个单位,则从左端开头的第一个非零数字起到末位数字止,所有数字都叫这个近似数的可靠数字。

1、用四舍五入法截得的近似数,从它的左面第一个不是零的数字起到末位数字止,所有的数字都是有效数字。也都是可靠数字。

2、用进一法或去尾法截得的近似数,从它的左面第一个不是零的数字起到末位止,所有的数字都是可靠数字。在这些可靠数字中,除末位外,都是有效数字。

【科学计数法】 当近似数是整十、整百、整千、??的数时,如果不加说明,我们就无法确定它们的有效数字和可靠数字。例如,近似数5700,如无说明,我们就不能确定它是用什么方法截取到那个数位得到的,它可能是精确数5698用四舍五入法截取到百位得到的,也可能是5698截取到十位得到的,如果是前一种情况,那么它有两个有效数字(5、7),如果是后一种情况,那么它有三个有效数字(5、7、

- -

8

搜索更多关于: 《小学数学疑难问题研究》 的文档
  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

于自然数集不讲究所含元素的顺序,而自然数列中所有的自然数都必须按照从小到大的顺序排列。只要有一处违反了这样的顺序,如0,2,1,3,??,它就不是自然数列。当然,少了一个自然数的数集或数列也不再是自然数集或自然数列。 【自然数列的性质】 自然数列有以下性质: (1)有始。自然数列是从0开始的。0不是任何其它自然数的继数; (2)有序。每一个自然数都有且只有一个继数;除了0,每个自然数都有且只有一个先行的数; (3)无限。自然数列是一个无限数列。没有最后的(或者说最大的)自然数。 【扩大的自然数列】 这是一个应该消亡的数学名词。当我们认为“0不是自然数”时,把 1,2,3,?? 叫做“自然数列”。而将 0,1,2,3,?? 称为“扩大的自然数列”。现在,国家标准重新规定“

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com