当前位置:首页 > 山东科技职业学院毕业论文 - 图文
山东科技职业学院
人们在汽车的使用中发现,在湿滑的路面上行驶时,施加的制动力过小,会延长制动距离,降低行驶的安全性;施加的制动力过大,车轮被抱死,不仅不能有效地缩短制动距离,还会造成汽车侧滑、调头、失去控制,同时降低了安全性;只有对车轮施加适当的制动力 ,防止车轮抱死,才能提高制动速度,缩短制动距离,使汽车平稳停止。
汽车是利用地面和轮胎之间产生的摩擦力减速的。制动时,车体速度因为轮胎路面之间的摩擦力作用而减小,车轮速度因为制动蹄与车轮鼓之间的摩擦力作用而减小。由于车速、载重、路面、车况等因素的影响,车速和轮速的降低并不完全相同,总是存有一定的差值,这一差值就是我们经常见到的打滑,也称为滑移现象,即车轮已经停止转动,车体还在前行。在科学计算中,这一现象的程度用滑移率来表示:
滑移率=(车速-轮速)÷车速×100%
从上式可以看出,当车速等于轮速时,滑移率等于零,为正常行驶;汽车制动时,车速和轮速值差越大,滑移率越大;停止之前,如果轮速为零,滑移动率为100%,为滑行状态。科学计算和实验证明,最佳制动状态不是出现在车轮抱死时,而是出现在车轮与地面维持20%滑移率时。此时,汽车制动不出现严重方向失控、侧滑和甩尾等危险情况。
早在20世纪初,人们就开始研究制动防抱死技术。开始应用于飞机和铁路,直到50年代后期,ABS技术开始用于汽车。其核心思想始终是避免使制动力像开关一样,只把液压制动力控制在零或最大,而是根据车轮的减速情况,阶段性地控制液压,使制动性能得到最大限度的改善。
首先由轮速传感器测出与车轮或驱动轴共同旋转地传感齿轮的齿数,从而得到频率与车轮转速成正比的交流信号。轮速传感器的交流信号送入电子控制器,电子控制器计算出车轮速度、滑移率和车轮的加、减速度,然后再由电子控制器对这些信号加以分析,给压力调节器发出制动压力控制指令。压力调节器安装在制动系统的制动总水泵与制动分泵之间,接受控制器的指令后,由压力调节器中的电磁阀控制制动压力的增加或减小,从而调节制动力矩,使之与地面附着状况相适应防止制动车轮被抱死。电子控制器还对ABS的其他元件进行控制,当这些元件发生故障时,控制器令警报灯点亮,并使整个系统停止工作,恢复到常规制
- 5 -
山东科技职业学院
动方式。
1.2 车轮防抱死系统(ABS)的分类
ABS根据制动系统的传动介质,可分为气压系统、气顶液系统和液压系统。 气压系统主要用于重型载重汽车及其挂车,由发动机产生的压缩气直接控制动力分泵的气压,不需在原有的系统中增加另外的部件,能较容易地独立控制各车轮的制动力。
气顶液系统一般用于大中型汽车,在前后轴原有的制动管路中各装一个空气加压器,通过控制动力气室的输入气压间接地控制液压主缸的输出液压。
液压系统用于轿车、厢式车和轻型载重车,系统中增加了一套制动传动介质的独立供给装置,如支流电动机和再循环油泵。
ABS根据控制通道数量和传感器数量,可分为单通道式、双通道式、三通道式和四通道式。
根据控制方式,ABS可分为机械式和电子式。由于机械式ABS控制精度差,反应速度慢,不能保证紧急制动时车轮不被抱死,已经基本被电子式ABS所取代。
根据压力调节器的布置,ABS分为整体式和分离式。将压力调节器与制动总泵制成一体的称整体式,具有独立制动压力调节器和独立制动总泵的称分离式。
2 车轮防抱死系统(ABS)的组成与原理
2.1 车轮防抱死系统(ABS)的结构组成
普通行车制动系的结构原理大家都很清楚,下面仅介绍液压式行车制动系(如图1)。
汽车正常行驶时,制动蹄10连同摩擦片9在弹簧13的拉力下,与固定在车轮轮毂上制动鼓8之间保持有一定的间隙,使制动鼓能随车轮一同自由转动。欲使行驶中的汽车减速或停车时,驾驶员只要踩下制动踏板1,就可使肌体的制动能源通过推杆2和制动主缸4中的活塞3,使主缸内的制动液加压流入制动轮缸6,并通过两个轮缸活塞7推动两个制动蹄10连同摩擦片9绕支承销12转动,使摩擦片的外圆面压紧在制动鼓8的内圆面上。这样,固定不旋转地制动蹄摩擦片就对旋转着的制动鼓作用一个摩擦力矩Mu,其方向与车轮旋转方向相反。制动鼓将该制动器制动力矩传到车轮后,由于车轮与路面的附着作用,车轮对路面
- 6 -
山东科技职业学院
作用一个向前的周缘力,即制动器制动力Fu。同时,路面也给车轮一个向后的反作用力,即路面制动力Fb,这就是制动时迫使汽车减速行驶直至停车的外力。路面制动力愈大,汽车减速度也就愈大。当驾驶员松开制动踏板时,回位弹簧13即将制动蹄拉回原位,摩擦片的外圆面与制动鼓的内圆面之间恢复原有间隙,摩擦力矩Mu和制动力Fb解除,制动作用也就终止。
1-制动踏板 2-推杆 3-主缸活塞 4-制动主缸 5-油管 6-制动轮缸 7-轮缸活塞 8-制动鼓
9-摩擦片 10-制动蹄 11-制动底板 12-支承销 13-制动蹄回位弹簧
图1 液压行车制动系的结构原理
综上所述不难看出,阻止汽车行驶的路面制动力Fb不仅取决于制动器制动力Fu的大小,而且还受到轮胎与路面间附着条件的限制。也就是说,汽车制动系只有具备了足够的制动器制动力Fu,同时路面又能提供大的附着力F1时,才能获得较大的路面制动力Fb。
2.2 制动系统工作过程:
- 7 -
山东科技职业学院
1-前制动气室 2-直踏式制动阀 3-手制动阀 4-快放阀 5-气压警报开关6-三通管 7弹簧储能式制动室 8-感载储阀 9-后制动灯开关 10-储气筒 11-四回路保护阀 12-气压表 13-三通管接头 14-空压机 15-气压调节器 16-湿处气筒 17-放气阀 18-安全阀 19-低压警报开关 20-双路阀 21-四通接头 22-前制动灯开关
汽车双管路制动系统
①驻车制动。汽车驻车时,操纵手制动阀3,放掉驻车制动三通管6和快放阀4中的压缩空气,使弹簧储能式后制动气室中的储能弹簧释放,推动后轮鼓式制动器制动蹄片张开,摩擦片紧压在制动鼓的内圆面上,起驻车制动作用。在制动中,制动三通管中压缩空气已全部流失,仍有驻车制动。
②解除驻车制动。起动发动机,带动空气压缩机运转,使制动系统供气管路和两个储气筒中充满压缩空气,压缩空气的压力可由气压表12来指示。此时接在驻车制动供气管路中的快放阀4和气压警报开关5无气压,气压警报开关控制警报器发响和警报灯亮,指示汽车处于驻车制动状态。操纵手制动阀3至解除制动位置,气压较低时,气压警报灯仍然灯亮,表示制动气压不足;制动气压足够时,驻车制动供气管路通过快放阀4和三通管接头使驻车制动气室供气,压缩后轮制动气室储能弹簧,使后轮制动蹄片回位,后轮制动即处于非制动状态,气压警报灯熄灭,表示汽车制动气压足够,可以起步。
③行车制动。行车中在制动系统供气管路气压足够的情况下,踏下行车制动
- 8 -
共分享92篇相关文档