当前位置:首页 > 浙江省杭州市第二中学2018-2019学年高三下学期仿真考数学试题+Word版含解析
点睛:该题考查的是有关二项式定理的问题,涉及到的知识点有二项展开式的通项,利用通项求特定项的系数,赋值法求值等,在解题的过程中,需要时刻注意所用结果的正确性,不能记混了. 14. 在【答案】
【解析】分析:首先设出相应的直角边长,利用余弦勾股定理得到相应的斜边长,之后应用余弦定理得到直角边长之间的关系,从而应用正切函数的定义,对边比临边,求得对应角的正切值,即可得结果. 详解:根据题意,设
,则
,根据
,
中,
,
.若
,则
_________.
得,由勾股定理可得,
根据余弦定理可得化简整理得所以
,即,故答案是.
, ,解得
,
点睛:该题考查的是有关解三角形的问题,在解题的过程中,注意分析要求对应角的正切值,需要求谁,而题中所给的条件与对应的结果之间有什么样的连线,设出直角边长,利用所给的角的余弦值,利用余弦定理得到相应的等量关系,求得最后的结果.
15. 如图,在边长为1的正方形ABCD中,E为AB的中点,P为以A为圆心,AB为半径的圆弧(在正方形内,包括边界点)上的任意一点,则
的取值范围是________; 若向量
,则的最小值为_________.
【答案】 (1). (2).
【解析】分析:首先根据图形的特征,建立适当的平面直角坐标系,根据正方形的边长,设出点P的坐标,利用终点坐标减去起点坐标,得到对应向量的坐标利用向量数量积坐标公式求得结果;再者就是利用向量相等得到坐标的关系,将其值转化为对应自变量的函数关系,结合自变量的取值范围,求得最小值.
详解:如图,以A为原点,以AB所在直线为x轴,建立平面直角坐标系,结合题意,可知
,所以
以
,所以
的范围是
;
,因为
,所以
,所
根据,可得,即,从而可以求得
,
所以因为
,所以
,
,所以当
取得最大值1时,同时
取得最小值0,
这时取得最小值为,所以的最小值是.
点睛:该题考查的是有关向量的问题,在解题的过程中,注意建立相应的坐标系,将向量坐标化,从而容易求解,再者就是利用向量相等的条件是坐标相等,得到利用三角式子的特征求得相应的最值.
16. 工人在安装一个正六边形零件时,需要固定如图所示的六个位置的螺栓.若按一定顺序将每个螺栓固定紧,但不能连续固定相邻的2个螺栓.则不同的固定螺栓方式的种数是________. ....
关于的关系式,
【答案】60
【解析】分析:首先将选定第一个钉,总共有6种方法,假设选定1号,之后分析第二步,第三步等,按照分类加法计数原理,可以求得共有10种方法,利用分步乘法计数原理,求得总共有
种方法.
详解:根据题意,第一个可以从6个钉里任意选一个,共有6种选择方法,并且是机会相等的,若第一个选1号钉的时候,第二个可以选3,4,5号钉,依次选下去,可以得到共有10种方法,所以总共有
种方法,故答案是60.
点睛:该题考查的是有关分类加法计数原理和分步乘法计数原理,在解题的过程中,需要逐个的将对应的过程写出来,所以利用列举法将对应的结果列出,而对于第一个选哪个是机会均等的,从而用乘法运算得到结果. 17. 已知函数【答案】
【解析】分析:首先利用绝对值的意义去掉绝对值符号,之后再结合后边的函数解析式,对照函数值等于2的时候对应的自变量的值,从而得到分段函数的分界点,从而得到相应的等量关系式,求得参数的值. 详解:根据题意可知可以发现当
或
时是分界点,
是分界点,
,
的最小值为2,则
_________.
结合函数的解析式,可以判断0不可能,所以只能是
故,解得,故答案是.
点睛:该题考查的是有关函数的最值问题,在解题的过程中,需要先将绝对值符号去掉,之后分析函数解析式,判断函数值等于2时对应的自变量的值,再利用其为最小值,得到相应的分段函数的分界点,从而得到结果.
三、解答题:本大题共5小题,共74分.解答应写出文字说明.证明过程或演算步骤. 18. 在ABC中,角A,B,C的对边分别为a,b,c,已知(Ⅰ)求(Ⅱ)若【答案】(1)
的大小;
,求(2)
面积的最大值.
,
【解析】分析:(1)利用正弦定理以及诱导公式与和角公式,结合特殊角的三角函数值,求得角C;
(2)运用向量的平方就是向量模的平方,以及向量数量积的定义,结合基本不等式,求得的最大值,再由三角形的面积公式计算即可得到所求的值. 详解:(1)
,
,
(Ⅱ)取
中点,则
,在
两边平方)即
中,
,
,
(注:也可将
,所以,当且仅当时取等号.
此时,其最大值为.
点睛:该题考查的是有关三角形的问题,涉及到的知识点有正弦定理,诱导公式,和角公式,向量的平方即为向量模的平方,基本不等式,三角形的面积公式,在解题的过程中,需要正确使用相关的公式进行运算即可求得结果.
19. 如图,在四边形ABCD中,AB//CD,∠ABD=30°,AB=2CD=2AD=2,DE⊥平面ABCD,EF//BD,且BD=2EF.
(Ⅰ)求证:平面ADE⊥平面BDEF;
共分享92篇相关文档