云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 备战中考数学压轴题专题复习—平行四边形的综合附答案解析

备战中考数学压轴题专题复习—平行四边形的综合附答案解析

  • 62 次阅读
  • 3 次下载
  • 2025/6/15 11:32:18

∵∠EAF=∠BAD, ∴∠1+∠2=∠BAD, ∴∠2+∠3=∠BAD, ∴∠EAF=∠E′AF, 在△AEF和△AE′F中

∴△AEF≌△AE′F(SAS), ∴EF=E′F,

∴EF=DE′+DF=BE+DF;

归纳:在四边形ABCD中,点E、F分别在BC、CD上,当AB=AD,∠B+∠D=180°,∠EAF=∠BAD时,EF=BE+DF. 考点:四边形综合题.

10.如图1,在菱形ABCD中,ABC=60°,若点E在AB的延长线上,EF∥AD,EF=BE,点P是DE的中点,连接FP并延长交AD于点G.

(1)过D作DHAB,垂足为H,若DH=

FP;

,BE=AB,求DG的长;

(2)连接CP,求证:CP

(3)如图2,在菱形ABCD中,ABC=60°,若点E在CB的延长线上运动,点F在AB的延长线上运动,且BE=BF,连接DE,点P为DE的中点,连接FP、CP,那么第(2)问的结论成立吗?若成立,求出【解析】

试题分析:(1)根据菱形得出DA∥BC,CD=CB,∠CDG=∠CBA=60°,则

∠DAH=∠ABC=60°,根据DH⊥AB得出∠DHA=90°,根据Rt△ADH的正弦值得出AD的长

的值;若不成立,请说明理由.

【答案】(1)1;(2)见解析;(3)

度,然后得出BE的长度,然后证明△PDG≌△PEF,得出DG=EF,根据EF∥AD,AD∥BC得出EF∥BC,则说明△BEF为正三角形,从而得出DG的长度;(2)连接CG、CF,根据△PDG≌△PEF得出PG=PF,然后证明△CDG≌△CBF,从而得到CG=CF,根据PG=PF得出垂直;(3)过D作EF的平行线,交FP延长于点G,连接CG、CF证△PEF≌△PDG,然后证明△CDG≌△CBF,从而得出∠GCE=120°,根据Rt△CPF求出比值.

试题解析:(1)解:∵四边形ABCD为菱形 ∴DA∥BC CD=\∠CDG=∠CBA=60° ∴∠DAH=∠ABC=60°

∵DH⊥AB ∴∠DHA=90° 在Rt△ADH中 sin∠DAH=

∴AD=

∴BE=AB=

×4=1 ∵EF∥AD ∴∠PDG=∠PEB ∵P为DE的中点 ∴PD=PE

∵∠DPG=∠EPF ∴△PDG≌△PEF ∴DG=EF ∵EF∥AD AD∥BC ∴EF∥BC ∴∠FEB=∠CBA=60° ∵BE=EF ∴△BEF为正三角形 ∴EF=BE=1 ∴DG=EF=1 、证明:连接CG、CF

由(1)知 △PDG≌△PEF ∴PG=PF

在△CDG与△CBF中 易证:∠CDG=∠CBF=60° CD=CB BF=EF=DG ∴△CDG≌△CBF ∴CG=CF ∵PG=PF ∴CP⊥GF (3)如图:CP⊥GF仍成立

理由如下:过D作EF的平行线,交FP延长于点G

连接CG、CF证△PEF≌△PDG ∴DG=EF=BF ∵DG∥EF ∴∠GDP=∠EFP ∵DA∥BC ∴∠ADP=∠PEC

∴∠GDP-∠ADP=∠EFP-∠PEC ∴∠GDA=∠BEF=60° ∴∠CDG=∠ADC+∠GDA=120° ∵∠CBF=180°-∠EBF=120° ∴∠CBF=∠CDG ∵CD=BC DG=BF ∴△CDG≌△CBF

∴CG=CF ∠DCG=∠FCE ∵PG=PF ∴CP⊥PF ∠GCP=∠FCP

∵∠DCP=180-∠ABC=120° ∴∠DCG+∠GCE=120° ∴∠FCE+∠GCE=120° 即∠GCE=120° ∴∠FCP=∠GCE=60° 在Rt△CPF中 tan∠FCP=tan60°=考点:三角形全等的证明与性质.

=

  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

∵∠EAF=∠BAD, ∴∠1+∠2=∠BAD, ∴∠2+∠3=∠BAD, ∴∠EAF=∠E′AF, 在△AEF和△AE′F中 , ∴△AEF≌△AE′F(SAS), ∴EF=E′F, ∴EF=DE′+DF=BE+DF; 归纳:在四边形ABCD中,点E、F分别在BC、CD上,当AB=AD,∠B+∠D=180°,∠EAF=∠BAD时,EF=BE+DF. 考点:四边形综合题. 10.如图1,在菱形ABCD中,ABC=60°,若点E在AB的延长线上,EF∥AD,EF=BE,点P是DE的中点,连接FP并延长交AD于点G. (1)过D作DHAB,垂足为H,若DH=FP; ,BE=AB,求DG的长; (2)连接CP,求证:CP

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com