当前位置:首页 > 最新-2018年中考数学压轴题20180题精选(2018-20题)答案 精品
②当点Q在x轴下方时,△QAB就是△ACB,此时点Q的坐标是(4,?3), 经检验,点(10,33)与(-2,33)都在抛物线上 综上所述,存在这样的点Q,使△QAB∽△ABC 点Q的坐标为(10,33)或(-2,33)或(4,?3).
【016】解:(1)设正比例函数的解析式为y?k1x(k1?0), 因为y?k1x的图象过点A(3,3),所以3?3k1,解得k1?1.
这个正比例函数的解析式为y?x. ················································································· (1分) 设反比例函数的解析式为y?k2k(k2?0).因为y?2的图象过点A(3,3),所以 xxk9······································· (2分) 3?2,解得k2?9.这个反比例函数的解析式为y?.·
3x993?3?的图象上,所以m??,则点B?6,?. ········· (3分)
2x62??(2)因为点B(6,m)在y?设一次函数解析式为y?k3x?b(k3?0).因为y?k3x?b的图象是由y?x平移得到的, 所以k3?1,即y?x?b.又因为y?x?b的图象过点B?6,?,所以
??3?2?399································· (4分) ?6?b,解得b??,?一次函数的解析式为y?x?. ·
222(3)因为y?x?9?9???. 的图象交y轴于点D,所以D的坐标为?0,2?2?2设二次函数的解析式为y?ax?bx?c(a?0).
?3)、B?6,?、和D?0,因为y?ax?bx?c的图象过点A(3,2??3?2???9??, 2?
?1??9a?3b?c?3,a??,?2??3?所以?36a?6b?c?, ····················· (5分) 解得?b?4,
2??99??c??.c??.2???2这个二次函数的解析式为y??(4)Qy?x?129··························································· (6分) x?4x?. ·
229?9?0?, 交x轴于点C,?点C的坐标是?,22??y 151131?6??6?6???3??3?3 22222993 ?45?18??
4281?. O 4281227假设存在点E(x0,y0),使S1?S?. ??3432如图所示,S?A E 3 B C 6 x Q四边形CDOE的顶点E只能在x轴上方,?y0?0, D 19919819?S1?S△OCD?S△OCE ?????gy0??y0.
2222284819273,?y0?.QE(x0,y0)在二次函数的图象上, ??y0?84221293??x0?4x0??.解得x0?2或x0?6.
222当x0?6时,点E?6,?与点B重合,这时CDOE不是四边形,故x0?6舍去,
??3?2??3?
?点E的坐标为?2,?. (8分)
?2?
【017】解:(1)已知抛物线y?x?bx?c经过A(1,,0)B(0,2),
2?0?1?b?c?b??3 解得? ??2?0?0?cc?2???所求抛物线的解析式为y?x2?3x?2. ············································································ 2分
,0),B(0,2),?OA?1(2)QA(1,OB?2
可得旋转后C点的坐标为(31)································································································· 3分 , ·
当x?3时,由y?x?3x?2得y?2, 可知抛物线y?x?3x?2过点(3,2)
22?将原抛物线沿y轴向下平移1个单位后过点C.
?平移后的抛物线解析式为:y?x2?3x?1. ····································································· 5分
22(3)Q点N在y?x?3x?1上,可设N点坐标为(x0,x0?3x0?1)
33?5?将y?x?3x?1配方得y??x???,?其对称轴为x?. ·································· 6分
22?4?22①当0?x0?3时,如图①, 2y QS△NBB1?2S△NDD1
B B1 O A D N D1 图①
C x 11?3???1?x0?2??1???x0? 22?2?Qx0?1
2此时x0?3x0?1??1
········································································································· 8分 ?1). ·?N点的坐标为(1,3②当x0?时,如图②
2同理可得
y 11?3??1?x0?2???x0?? 22?2?B1 O B A D D1 图②
N C x ?x0?3
2此时x0?3x0?1?1
?点N的坐标为(31),.
,?1)或(31),. ·综上,点N的坐标为(1·················································································· 10分 ,0),C(0,4)两点, 【018】解:(1)Q抛物线y?ax?bx?4a经过A(?12?a?b?4a?0,?a??1,解得? ????4a?4.?b?3.
?抛物线的解析式为y??x2?3x?4.
(2)Q点D(m,m?1)在抛物线上,?m?1??m?3m?4,
y 即m?2m?3?0,?m??1或m?3.
22Q点D在第一象限,?点D的坐标为(3,4).
由(1)知OA?OB,??CBA?45°. 设点D关于直线BC的对称点为点E.
C D A E O B QC(0,4),?CD∥AB,且CD?3,
x ??ECB??DCB?45°,
?E点在y轴上,且CE?CD?3.
,. ?OE?1,?E(01)即点D关于直线BC对称的点的坐标为(0,1).
(3)方法一:作PF⊥AB于F,DE⊥BC于E. 由(1)有:OB?OC?4,??OBC?45°, Q?DBP?45°,??CBD??PBA.
y QC(0,,4)D(3,4),?CD∥OB且CD?3.
C P A E D ??DCE??CBO?45°,
?DE?CE?32. 252, 2F O B x QOB?OC?4,?BC?42,?BE?BC?CE?DE3?. BE5设PF?3t,则BF?5t,?OF?5t?4, ?tan?PBF?tan?CBD??P(?5t?4,3t).
QP点在抛物线上,
?3t??(?5t?4)2?3(?5t?4)?4,
?t?0(舍去)或t?22?266?,?P??,?. 25?525?方法二:过点D作BD的垂线交直线PB于点Q,过点D作DH⊥x轴于H.过Q点作QG⊥DH于G.
Q?PBD?45°,?QD?DB. ??QDG??BDH?90°,
Q
y C P G D A O H B x
共分享92篇相关文档