当前位置:首页 > 最新-2018年中考数学压轴题20180题精选(2018-20题)答案 精品
2018年中考数学压轴题100题精选(11-20题)答案
【011】解:(1)证明:在Rt△FCD中,∵G为DF的中点,∴ CG= FD.………1分 同理,在Rt△DEF中,EG= FD.…………2分∴ CG=EG.…………………3分 (2)(1)中结论仍然成立,即EG=CG.…………………………4分 证法一:连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点. 在△DAG与△DCG中,∵ AD=CD,∠ADG=∠CDG,DG=DG, ∴ △DAG≌△DCG.∴ AG=CG.………………………5分
在△DMG与△FNG中,∵ ∠DGM=∠FGN,FG=DG,∠MDG=∠NFG,
∴ △DMG≌△FNG.∴ MG=NG 在矩形AENM中,AM=EN. ……………6分 在Rt△AMG 与Rt△ENG中,∵ AM=EN, MG=NG,
∴ △AMG≌△ENG.∴ AG=EG.∴ EG=CG. ……………………………8分 证法二:延长CG至M,使MG=CG, 连接MF,ME,EC, ……………………4分
在△DCG 与△FMG中,∵FG=DG,∠MGF=∠CGD,MG=CG, ∴△DCG ≌△FMG.∴MF=CD,∠FMG=∠DCG.
∴MF∥CD∥AB.………………………5分∴ 在Rt△MFE 与Rt△CBE中,
∵ MF=CB,EF=BE,∴△MFE ≌△CBE.∴∠MEC=∠MEF+∠FEC=∠CEB+∠CEF=90°.∴ △MEC为直角三角形.∵ MG = CG,∴ EG= MC.………8分
(3)(1)中的结论仍然成立,即EG=CG.其他的结论还有:EG⊥CG.……10分 【012】解:(1)Q圆心O在坐标原点,圆O的半径为1,
?点A、B、C、D的坐标分别为A(?1,、0)B(0,?1)、C(1,、0)D(01),
Q抛物线与直线y?x交于点M、N,且MA、NC分别与圆O相切于点A和点C,
?M(?1,?1)、N(11),.Q点D、M、N在抛物线上,将D(01),、M(?1,?1)、N(11),的坐标代入
?c?1?a??1??y?ax2?bx?c,得:??1?a?b?c 解之,得:?b?1
?1?a?b?c?c?1???抛物线的解析式为:y??x2?x?1. ················································································ 4分
1?5?(2)Qy??x?x?1???x???
2?4?22
?抛物线的对称轴为x?1, 2y D E C F P N 115?OE?,DE??1?. ······················· 6分
242连结BF,?BFD?90°,
?△BFD∽△EOD,?又DE?DEOD, ?DBFDA M O B 5,OD?1,DB?2, 245, 5x ?FD??EF?FD?DE?45535??. ··············································································· 8分 5210(3)点P在抛物线上. ············································································································· 9分 设过D、C点的直线为:y?kx?b,
将点C(1,、0)D(01),的坐标代入y?kx?b,得:k??1,b?1,
?直线DC为:y??x?1. ·································································································· 10分
过点B作圆O的切线BP与x轴平行,P点的纵坐标为y??1, 将y??1代入y??x?1,得:x?2.
?P点的坐标为(2,?1),当x?2时,y??x2?x?1??22?2?1??1,
所以,P点在抛物线y??x?x?1上. ·············································································· 12分 【013】解:(1)Q该抛物线过点C(0,?2),?可设该抛物线的解析式为y?ax?bx?2. 将A(4,0),B(1,0)代入,
221?a??,?16a?4b?2?0,??2得?解得?
5a?b?2?0.??b?.??215?此抛物线的解析式为y??x2?x?2. ································································ (3分)
22(2)存在. ·························································································································· (4分)
如图,设P点的横坐标为m,
则P点的纵坐标为?当1?m?4时,
125m?m?2, 22y B O 1 ?2 15AM?4?m,PM??m2?m?2.
22又Q?COA??PMA?90°,
AMAO2?①当??时,
PMOC1△APM∽△ACO,
即4?m?2??D P A M E C 4 x (第26题图) ?125?m?m?2?.
2?2?解得m1?2,m2?4(舍去),?P(21)···································································· (6分) ,. ·②当
AMOC115??时,△APM∽△CAO,即2(4?m)??m2?m?2. PMOA222解得m1?4,m2?5(均不合题意,舍去)
?当1?m?4时,P(2,···························································································· (7分) 1). ·
类似地可求出当m?4时,P(5,········································································· (8分) ?2). ·当m?1时,P(?3,?14).
综上所述,符合条件的点P为(2,································· (9分) 1)或(5,?2)或(?3,?14). ·
5t?2. 21过D作y轴的平行线交AC于E.由题意可求得直线AC的解析式为y?x?2.(10分)
2(3)如图,设D点的横坐标为t(0?t?4),则D点的纵坐标为?t?212151?1??1?· (11分) ?E点的坐标为?t,t?2?.?DE??t2?t?2??t?2???t2?2t. ·
22222????1?1??S△DAC????t2?2t??4??t2?4t??(t?2)2?4.
2?2??当t?2时,△DAC面积最大.?D(2,1). ··························································· (13分)
【014】(1)解:∵A点第一次落在直线y?x上时停止旋转,∴OA旋转了45.
045??22??.……………4分 ∴OA在旋转过程中所扫过的面积为
3602(2)解:∵MN∥AC,∴?BMN??BAC?45?,?BNM??BCA?45?. ∴?BMN??BNM.∴BM?BN.又∵BA?BC,∴AM?CN.
又∵OA?OC,?OAM??OCN,∴?OAM??OCN.∴?AOM??CON.∴
1?AOM?(90??45????????.∴旋转过程中,当MN和AC平行时,正方形OABC旋转的度
2数为45?????????????.……………………………………………8分
(3)答:p值无变化. 证明:延长BA交y轴于E点,则?AOE?45??AOM,
0?CON?900?450??AOM?450??AOM,∴?AOE??CON.又∵OA?OC,
?OAE?1800?900?900??OCN.∴?OAE??OCN.∴OE?ON,AE?CN.
又∵?MOE??MON?45,OM?OM, ∴?OME??OMN. y ∴MN?ME?AM?AE.∴MN?AM?CN,
0E y?x A M B ∴p?MN?BN?BM?AM?CN?BN?BM?AB?BC?4. ∴在旋转正方形OABC的过程中,p值无变化. ……………12分
2
O C N x
(第26题)
【015】⑴设二次函数的解析式为:y=a(x-h)+k∵顶点C的横坐标为4,且过点(0,73)
9∴y=a(x-4)+k 73?16a?k ………………①
92
又∵对称轴为直线x=4,图象在x轴上截得的线段长为6 ∴A(1,0),B(7,0)
∴0=9a+k ………………②由①②解得a=3,k=-3∴二次函数的解析式为:y=3(x-4)2-3
99⑵∵点A、B关于直线x=4对称 ∴PA=PB ∴PA+PD=PB+PD≥DB ∴当点P在线段DB上时PA+PD取得最小值 ∴DB与对称轴的交点即为所求点P
设直线x=4与x轴交于点M ∵PM∥OD,∴∠BPM=∠BDO,又∠PBM=∠DBO 73?3PMBM3∴点P的坐标为(4,3) 9∴△BPM∽△BDO∴ ∴PM???3DOBO73⑶由⑴知点C(4,?3),又∵AM=3,∴在Rt△AMC中,cot∠ACM=3,
3∴∠ACM=60,∵AC=BC,∴∠ACB=120
①当点Q在x轴上方时,过Q作QN⊥x轴于N 如果AB=BQ,由△ABC∽△ABQ有 BQ=6,∠ABQ=120,则∠QBN=60∴QN=33,BN=3,ON=10,此时点Q(10,33), 如果AB=AQ,由对称性知Q(-2,33)
o
o
o
o
共分享92篇相关文档