当前位置:首页 > 学而思寒假七年级尖子班讲义第1讲平行线四大模型(1)
Contents
第1讲 平行线四大模型……………………………………………………………1 第2讲 实数三大概念………………………………………………………………17 第3讲 平面直角坐标系……………………………………………………………33 第4讲 坐标系与面积初步…………………………………………………………51 第5讲 二元—次方程组进阶………………………………………………………67 第6讲 含参不等式(组)…………………………………………………………79
目 录
第 1 页 共 11 页
1
平行线四大模型
知识目标
目标一 熟练掌握平行线四大模型的证明 目标二 熟练掌握平行线四大模型的应用
目标三 掌握辅助线的构造方法,熟悉平行线四大模型的构造
秋季回顾 平行线的判定与性质
l、平行线的判定
根据平行线的定义,如果平面内的两条直线不相交,就可以判断这两条直线平行,但是,由于直线无限延伸,检验它们是否相交有困难,所以难以直接根据定义来判断两条直线是否平行,这就需要更简单易行的判定方法来判定两直线平行. 判定方法l:
两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行. 简称:同位角相等,两直线平行. 判定方法2:
两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行. 简称:内错角相等,两直线平行, 判定方法3:
两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.
简称:同旁内角互补,两直线平行,
如上图:
若已知∠1=∠2,则AB∥CD(同位角相等,两直线平行); 若已知∠1=∠3,则AB∥CD(内错角相等,两直线平行);
若已知∠1+ ∠4= 180°,则AB∥CD(同旁内角互补,两直线平行). 另有平行公理推论也能证明两直线平行:
平行公理推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行. 2、 平行线的性质
利用同位角相等,或者内错角相等,或者同旁内角互补,可以判定两条直线平行.反 过来,如果已知两条直线平行,当它们被第三条直线所截,得到的同位角、内错角、同 旁内角也有相应的数量关系,这就是平行线的性质. 性质1:
第 2 页 共 11 页
两条平行线被第三条直线所截,同位角相等. 简称:两直线平行,同位角相等 性质2:
两条平行线被第三条直线所截,内错角相等. 简称:两直线平行,内错角相等 性质3:
两条平行线被第三条直线所截,同旁内角互补. 简称:两直线平行,同旁内角互补
本讲进阶 平行线四大模型
模型一“铅笔”模型 点P在EF右侧,在AB、 CD内部 结论1:若AB∥CD,则∠P+∠AEP+∠PFC=3 60°; 结论2:若∠P+∠AEP+∠PFC= 360°,则AB∥CD.
“铅笔”模型 模型二“猪蹄”模型(M模型) 点P在EF左侧,在AB、 CD内部 结论1:若AB∥CD,则∠P=∠AEP+∠CFP; 结论2:若∠P=∠AEP+∠CFP,则AB∥CD.
“猪蹄”模型 模型三“臭脚”模型 点P在EF右侧,在AB、 CD外部 结论1:若AB∥CD,则∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP; 结论2:若∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP,则AB∥CD.
第 3 页 共 11 页
“臭脚”模型 模型四“骨折”模型 点P在EF左侧,在AB、 CD外部 “骨折”模型 结论1:若AB∥CD,则∠P=∠CFP-∠AEP或∠P=∠AEP-∠CFP; 结论2:若∠P=∠CFP-∠AEP或∠P=∠AEP-∠CFP,则AB∥CD.
巩固练习 平行线四大模型证明
(1) 已知AE // CF ,求证∠P +∠AEP +∠PFC = 360°
(2) 已知∠P=∠AEP+∠CFP,求证AE∥CF.
(3) 已知AE∥CF,求证∠P=∠AEP-∠CFP.
(4) 已知 ∠P= ∠CFP -∠AEP ,求证AE //CF .
第 4 页 共 11 页
.
共分享92篇相关文档