当前位置:首页 > 2017年辽宁省锦州市中考数学试题及参考答案(word解析版)
22.(8分)已知:四边形OABC是菱形,以O为圆心作⊙O,与BC相切于点D,交OA于E,交OC于F,连接OD,DF.
(1)求证:AB是⊙O的切线;
(2)连接EF交OD于点G,若∠C=45°,求证:GF2=DG?OE.
六、解答题(本大题共1小题,共10分) 23.(10分)为解决消费者停车难的问题,某商场新建一小型轿车停车场,经测算,此停车场每天需固定支出的费用(包括设施维修费、管理人员工资等)为600元,为制定合理的收费标准,该商场对每天轿车停放辆次(每辆轿车每停放一次简称为“辆次”)与每辆轿车的收费情况进行调查,发现每辆次轿车的停车费定价不超过10元时,每天来此停放的轿车都为300辆次;若每辆次轿车的停车费定价超过10元,则每超过1元,每天来此停放的轿车就减少12辆次,设每辆次轿车的停车费x元(为便于结算,停车费x只取整数),此停车场的日净收入为y元(日净收入=每天共收停车费﹣每天固定的支出)回答下列问题:
(1)①当x≤10时,y与x的关系式为: ; ②当x>10时,y与x的关系式为: ; (2)停车场能否实现3000元的日净收入?如能实现,求出每辆次轿车的停车费定价,如不能实现,请说明理由;
(3)该商场要求此停车场既要吸引顾客,使每天轿车停放的辆次较多,又要有最大的日净收入,按此要求,每辆次轿车的停车费定价应定为多少元?此时最大日净收入是多少元? 七、解答题(本大题共2小题,每小题12分,共24分) 24.(12分)已知:△ABC和△ADE均为等边三角形,连接BE,CD,点F,G,H分别为DE,BE,CD中点.
(1)当△ADE绕点A旋转时,如图1,则△FGH的形状为 ,说明理由;
(2)在△ADE旋转的过程中,当B,D,E三点共线时,如图2,若AB=3,AD=2,求线段FH的长;
(3)在△ADE旋转的过程中,若AB=a,AD=b(a>b>0),则△FGH的周长是否存在最大值和最小值,若存在,直接写出最大值和最小值;若不存在,说明理由.
5
25.(12分)如图,抛物线y=x2+bx+c经过B(﹣1,0),D(﹣2,5)两点,与x轴另一交点为A,点H是线段AB上一动点,过点H的直线PQ⊥x轴,分别交直线AD、抛物线于点Q,P. (1)求抛物线的解析式;
(2)是否存在点P,使∠APB=90°,若存在,求出点P的横坐标,若不存在,说明理由;
(3)连接BQ,一动点M从点B出发,沿线段BQ以每秒1个单位的速度运动到Q,再沿线段QD以每秒2个单位的速度运动到D后停止,当点Q的坐标是多少时,点M在整个运动过程中用时t最少?
参考答案与解析
一、选择题
1.?3的绝对值是( )
33 B.? C.3 33【分析】根据负数的绝对值等于它的相反数可得答案.
A.【解答】解:?3的绝对值是3,
D.
13故选:C.
【点评】此题主要考查了实数的性质,关键是掌握绝对值的性质.
6
共分享92篇相关文档