当前位置:首页 > 2020高考导数压轴题型归类总结
221?e2) 解得x0?e,故点P 的坐标为(e,?ax?ax?a?1(x?1)(ax?1?a)????2x2xx211?a∵0?a? ∴?1?0
2a1?a1?a∴当0?x?1,或x?时f?(x)?0,当1?x?时,f?(x)?0
aa11?a故当0?a?时,函数f(x)的单调递增区间为(1,);
2a1?a单调递减区间为(0,1),(,??)
a1x2(Ⅲ)当a?时,f(x)?lnx???1由(Ⅱ)可知函数f(x)在(0,1)上是减函数,
333x2e2在(1,2)上为增函数,在(2,e]上为减函数,且f(1)??,f(e)???
333e2?e2?2e3?(e?1)22?∵f(e)?f(1)?,又e?3?1,∴(e?1)?3,
3e3e2∴f(e)?f(1),故函数f(x)在(0,e]上的最小值为?
3(0,e],?x2?[0,1]使f(x1)≥g(x2)成立?g(x)在[0,1]上的最小值不大于 若对于?x1?2f(x)在(0,e]上的最小值?(*)
3552又g(x)?x?2bx??(x?b)2?b2?,x?[0,1]
121252①当b?0时,g(x)在[0,1]上为增函数,[g(x)]min?g(0)????与(*)矛盾
12352②当0?b?1时,[g(x)]min?g(b)??b?,
125212由?b???及0?b?1得,?b?1
1232③当b?1时,g(x)在[0,1]上为减函数,
7172[g(x)]min?g(1)??2b????,此时b?1
121231??) 综上,b的取值范围是[, 2(Ⅱ)f?(x)?15. (2010山东,两边分求,最小值与最大值) 已知函数f(x)?xlnx,g(x)??x2?ax?3. ⑴求f(x)在[t,t?2](t?0)上的最小值;
⑵若存在x??,e?(e是常数,e=2.71828???)使不等式2f(x)?g(x)成立,求实数a的取
e2a(x?1)(x?1?a)a
?1??? 13
值范围;
⑶证明对一切x?(0,??),都有lnx?解:⑴
,
12?成立. exex
所以f?x?min⑵由题意知
1?1? 0?t???ee?? ?tInt t?1?e?32xInx??x2?ax?3,则a?2Inx?x?,x323?x?3??x?1?设h?x??2Inx?x??x?0?则h??x???1?2?xxxx2?1?当x??,1?时,h??x??0,h?x?单调递减;?e?当x??1,e?时,h??x??0,h?x?单调递增;
??1???1?所以h?x?max?max?h??,h(e)?,因为存在x??,e?,使2f?x??g?x?成立,?e???e??所以a?h?x?max,113h()??2??3e,h(e)?2?e? eee11而h()?h(e),故a??3e?2
eex2(Ⅲ) 等价证明xInx?x??x??0,????
ee由⑴知
14
f?x??xInx?x??0,????的最小值是-1e1当且仅当x?取到,
ex21?x设??x??x??x??0,????,则???x??x,eee1易得??x?max???1???,当且仅当x?1时取到,e
x2从而对一切x??0,???都有xInx?x?成立,ee12即Inx?x?对一切x??0,???成立.
eex
16. (最值应用) 设函数f(x)?px?⑴求p与q的关系;
⑵若f(x)在其定义域内为单调函数,求p的取值范围; ⑶设g(x)?围.
解:(1)由题意得f(e)?pe?而e?qp?2lnx,且f(e)?qe??2,其中e是自然对数的底数. xe2e,若在?1,e?上至少存在一点x0,使得f(x0)>g(x0)成立,求实数p的取值范xqp1?2lne?qe??2?(p?q)(e?)?0 eee1?0,所以p、q的关系为p?q. eqp(2)由(1)知f(x)?px??2lnx?px??2lnx,
xxp2px2?2x?p2'.令h(x)?px?2x?p, f(x)?p?2??2xxx要使f(x)在其定义域(0,??)内单调,只需h(x)?0或h(x)?0恒成立.
2x'①当p?0时,h(x)??2x,因为x>0,所以h(x)<0,f(x)??2<0,
x∴f(x)在(0,??)内是单调递减函数,即p?0适合题意;
12ph(x)?p?②当>0时,h(x)?px?2x?p,∴, minp1只需p??0,即p?1时h(x)?0,f'(x)?0,
p∴f(x)在(0,??)内为单调递增函数,故p?1适合题意.
③当p<0时,h(x)?px2?2x?p,其图像为开口向下的抛物线,对称轴为x?1?(0,??),p 15
只要h(0)?0,即p?0时,h(x)?0在(0,??)恒成立,故p<0适合题意. 综上所述,p的取值范围为p?1或p?0.
2e在?1,e?上是减函数, x∴x?e时,g(x)min?2;x?1时,g(x)max?2e,即g(x)??2,2e?,
(3)∵g(x)?①当p?0时,由(2)知f(x)在?1,e?上递减?f(x)max?f(1)?0<2,不合题意;
1?0, x又由(2)知当p?1时,f(x)在?1,e?上是增函数,
1111∴f(x)?p(x?)?2lnx?x??2lnx?e??2lne?e??2<2,不合题意;
xxee③当p?1时,由(2)知f(x)在?1,e?上是增函数,f(1)?0<2,又g(x)在?1,e?上是减函数,
②当0<p<1时,由x??1,e??x?故只需f(x)max>g(x)min,x??1,e?,而f(x)max?f(e)?p(e?)?2lne,g(x)min?2, 即
1e14ep(e?)?2lne>2,解得p>2 ,
ee?14e,??). 综上,p的取值范围是(2e?1
17. (2011湖南文,第2问难,单调性与极值,好题) 设函数f(x)?x?⑴讨论函数f(x)的单调性;
1?alnx(a?R).x
⑵若f(x)有两个极值点x1,x2,记过点A(x1,f(x1)),B(x2,f(x2))的直线斜率为k,问:是否存在a,使得k?2?a?若存在,求出a的值;若不存在,请说明理由.
1ax2?ax?1 解:⑴f(x)的定义域为(0,??).f'(x)?1?2??2xxx令g(x)?x2?ax?1,其判别式V?a2?4.
①当|a|?2时,V?0,f'(x)?0,故f(x)在(0,??)上单调递增. ②当a??2时,在(0,??)上,f'(x)?0,故f(x)在(0,??)V>0,g(x)=0的两根都小于0,
上单调递增.
22a?a?4a?a?4,
③当a?2时,V>0,g(x)=0的两根为x1?,x2?22当0?x?x1时, f'(x)?0;当x1?x?x2时,f'(x)?0;当x?x2时,f'(x)?0,故f(x)分别在(0,x1),(x2,??)上单调递增,在(x1,x2)上单调递减. ⑵由⑴知,若f(x)有两个极值点x1,x2,则只能是情况③,故a?2.
16
共分享92篇相关文档