云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 石家庄市2016-2017学年高一下学期期末数学试卷+Word版含解析(1)

石家庄市2016-2017学年高一下学期期末数学试卷+Word版含解析(1)

  • 62 次阅读
  • 3 次下载
  • 2025/6/4 16:46:31

21.如图,要测量河对岸A、B两点之间的距离,选取相距km的C、D两点,并测得∠ACB=75°.∠BCD=∠ADB=45°,∠ADC=30°,请利用所测数据计算A、B之间的距离.

【考点】HU:解三角形的实际应用.

【分析】在△ACD中利用正弦定理计算AD,在△BCD中利用正弦定理计算BD,在△ABD中利用余弦定理计算AB.

【解答】解:在△ACD中,∠ACD=75°+45°=120°,∴∠CAD=30°, 由正弦定理得:

=

,解得AD=3,

在△BCD中,∠CDB=45°+30°=75°,∴∠CBD=60°, 由正弦定理得:

=

,解得BD=

在△ABD中,由余弦定理得AB==

22.如图,四棱锥P﹣ABCD中,底面ABCD为矩形,E为PD的中点. (1)求证:PB∥平面AEC;

(2)若PA⊥平面ABCD,PA=AD,求证:平面AEC⊥平面PCD.

【考点】LY:平面与平面垂直的判定;LS:直线与平面平行的判定.

【分析】(1)连接BD交AC于O点,连接EO,只要证明EO∥PB,即可证明PB∥平面

AEC;

(2)要证平面PDC⊥平面AEC,需要证明CD⊥AE,AE⊥PD,即垂直平面AEC内的两条相交直线.

【解答】证明:(1)连接BD交AC于O点,连接EO,

∵O为BD中点,E为PD中点, ∴EO∥PB,

又EO?平面AEC,PB?平面AEC, ∴PB∥平面AEC.

(2)∵PA⊥平面ABCD,CD?平面ABCD, ∴PA⊥CD,

又AD⊥CD,且AD∩PA=A,

∴CD⊥平面PAD,又AE?平面PAD, ∴CD⊥AE.

∵PA=AD,E为PD中点,

∴AE⊥PD. 又CD∩PD=D, ∴AE⊥平面PDC, 又AE?平面PAD, ∴平面PDC⊥平面AEC.

23.已知△ABC的三内角A、B、C的对边分别为a,b,c,且csinA=

acosC.

(1)求角C的大小;

(2)若c=2,求△ABC的面积的最大值. 【考点】HP:正弦定理.

【分析】(1)利用正弦定理化简已知等式,可得sinC=cosC,结合C是三角形的内角,

得出C=60°;

(2)由已知及余弦定理,基本不等式可求ab≤4,进而利用三角形面积公式即可得解. 【解答】(本题满分为12分) 解:(1)∵csinA=

acosC,

∴由正弦定理,得sinCsinA=sinAcosC

结合sinA>0,可得sinC=cosC,得tanC=

∵C是三角形的内角, ∴C=60°;

(2)∵c=2,C=60°,

∴由余弦定理可得:4=a2+b2﹣ab≥2ab﹣ab=ab,当且仅当a=b时等号成立, ∴S△ABC=absinC≤=

,当且仅当a=b时等号成立,即△ABC的面积的最大值

为.

24.已知函数g(x)=x2+bx+c,且关于x的不等式g(x)<0的解集为(﹣,0). (1)求实数b,c的值;

(2)若不等式0≤g(x)﹣<对于任意n∈N*恒成立,求满足条件的实数x

的值.

【考点】3R:函数恒成立问题.

【分析】(1)由题意可得0和﹣为方程x2+bx+c=0的两根,运用韦达定理可得b,c的值;

(2)由题意可得

≤x2+x,且>x2+x﹣对于任意n∈N*恒成立,将

分子常数化,由对勾函数的单调性,可得它的范围,由恒成立思想可得x2+x

﹣=0,解方程即可得到所求x的值.

【解答】解:(1)函数g(x)=x2+bx+c,且关于x的不等式g(x)<0的解集为(﹣,0).

可得0和﹣为方程x2+bx+c=0的两根, 可得0﹣=﹣b,0×(﹣)=c, 即有b=,c=0; (2)不等式0≤g(x)﹣

<对于任意n∈N*恒成立,

即为

≤x2+x,且

>x2+x﹣对于任意n∈N*恒成立,

=

=

, 由n∈N*,可得2n≥2,2n+

≥2+=,

可得0<

≤,

则≤x2+x,且x2+x﹣≤0, 即为x2+x﹣=0, 解得x=﹣1或.

附加题(共1小题,满分10分)

25.已知圆C的圆心在直线4x+y=0上,且与直线x+y﹣1=0相切于点P(3,﹣2). (1)求圆C的方程;

(2)过圆内一点P(2,﹣3)的直线l与圆交于A、B两点,求弦长AB的最小值. 【考点】J8:直线与圆相交的性质.

【分析】(1)过切点且与l:x+y﹣1=0垂直的直线为y=x﹣5,与y=﹣4x联立可求得圆心,再由两点间的距离公式求得半径r,即求得圆的方程.

(2)当CP⊥AB,即P为AB中点时,弦长AB最小,即可得弦长AB的最小值. 【解答】解:(1)过切点且与l:x+y﹣1=0垂直的直线为y=x﹣5,与y=﹣4x联立可求得圆心为C(1,﹣4), ∴r=

=2

∴所求圆的方程为(x﹣1)2+(y+4)2=8;

(2)当CP⊥AB,即P为AB中点时,弦长AB最小 CP=

弦长AB的最小值为2

2017年8月11日

  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

21.如图,要测量河对岸A、B两点之间的距离,选取相距km的C、D两点,并测得∠ACB=75°.∠BCD=∠ADB=45°,∠ADC=30°,请利用所测数据计算A、B之间的距离. 【考点】HU:解三角形的实际应用. 【分析】在△ACD中利用正弦定理计算AD,在△BCD中利用正弦定理计算BD,在△ABD中利用余弦定理计算AB. 【解答】解:在△ACD中,∠ACD=75°+45°=120°,∴∠CAD=30°, 由正弦定理得: =,解得AD=3, 在△BCD中,∠CDB=45°+30°=75°,∴∠CBD=60°, 由正弦定理得: =,解得BD=, 在△ABD中,由余弦定理得AB==. 2

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com