当前位置:首页 > 2021高考物理一轮复习第6章动量守恒定律及其应用第2讲动量守恒定律学案新人教版
第2讲 动量守恒定律
主干梳理 对点激活
知识点
动量守恒定律及其应用 Ⅱ
1.几个相关概念
(1)系统:在物理学中,将相互作用的几个物体所组成的物体组称为系统。 (2)内力:系统内各物体之间的相互作用力叫做内力。 (3)外力:系统以外的其他物体对系统的作用力叫做外力。 2.动量守恒定律
(1)内容:如果一个系统01不受外力,或者02所受外力的矢量和为0,这个系统的总动量保持不变,这就是动量守恒定律。
(2)表达式
①p=03p′,系统相互作用前的总动量p等于相互作用后的总动量p′。
②m1v1+m2v2=04m1v1′+m2v2′,相互作用的两个物体组成的系统,作用前的动量和等于作用后的动量和。
③Δp1=05-Δp2,相互作用的两个物体动量的增量等大反向。 ④Δp=060,系统总动量的增量为零。 (3)适用条件
①理想守恒:系统不受外力或所受外力的合力为零,则系统动量守恒。
②近似守恒:系统受到的合外力不为零,但当内力远大于外力时,系统的动量可近似看成守恒。
③某方向守恒:系统在某个方向上所受合外力为零时,系统在该方向上动量守恒。 知识点1.碰撞
碰撞是指物体间的相互作用持续时间01很短,而物体间相互作用力02很大的现象。 2.特点
在碰撞现象中,一般都满足内力03远大于外力,可认为相互碰撞的系统动量守恒。 3.分类 弹性碰撞和非弹性碰撞 Ⅰ
弹性碰撞 非弹性碰撞 动量是否守恒 守恒 守恒 机械能是否守恒 04守恒 有损失 完全非弹性碰撞 4.散射
守恒 损失05最大 微观粒子相互接近时并不像宏观物体那样“接触”,微观粒子的碰撞又叫做散射。 知识点
反冲 爆炸 Ⅰ
1.反冲现象
(1)在某些情况下,原来系统内物体具有相同的速度,发生相互作用后各部分的末速度不再相同而分开。这类问题相互作用的过程中系统的动能01增大,且常伴有其他形式的能向动能的转化。
(2)反冲运动的过程中,一般合外力为零或外力的作用02远小于物体间的相互作用力,可认为系统的动量守恒,可利用动量守恒定律来处理。
2.爆炸问题
爆炸与碰撞类似,物体间的相互作用力很大,且03远大于系统所受的外力,所以系统动量04守恒,爆炸过程中位移很小,可忽略不计,爆炸后物体从相互作用前的位置以新的动量开始运动。
一 堵点疏通
1.系统动量不变是指系统的动量大小和方向都不变。( ) 2.系统的动量守恒时,机械能也一定守恒。( )
3.当质量相等时,发生完全弹性碰撞的两个球碰撞前后速度交换。( )
4.光滑水平面上的两球做相向运动,发生正碰后两球均变为静止,于是可以断定碰撞前两球的动量大小一定相等。( )
5.只要系统内存在摩擦力,系统的动量就不可能守恒。( ) 答案 1.√ 2.× 3.√ 4.√ 5.× 二 对点激活
1.(人教版选修3-5·P16·T5改编)某机车以0.8 m/s的速度驶向停在铁轨上的15节车厢,跟它们对接。机车跟第1节车厢相碰后,它们连在一起具有一个共同的速度,紧接着又跟第2节车厢相碰,就这样,直至碰上最后一节车厢。设机车和车厢的质量都相等,则跟最后一节车厢相碰后车厢的速度为(铁轨的摩擦忽略不计)( )
A.0.053 m/s
B.0.05 m/s
C.0.057 m/s 答案 B
D.0.06 m/s
解析 取机车和15节车厢整体为研究对象,由动量守恒定律得mv0=(m+15m)v,则v=11
v0=×0.8 m/s=0.05 m/s。故B正确。 1616
2.(人教版选修3-5·P17·T7改编)悬绳下吊着一个质量为M=9.99 kg的沙袋,构成一个单摆,摆长L=1 m。一颗质量m=10 g的子弹以v0=500 m/s的水平速度射入沙袋,瞬间与沙袋达到共同速度(不计悬绳质量,g取10 m/s),则此时悬绳的拉力为( )
A.35 N C.102.5 N 答案 C
解析 子弹打入沙袋的过程中,对子弹和沙袋由动量守恒定律得mv0=(m+M)v,得子弹与沙袋的共同速度v=
B.100 N D.350 N
2
mv00.01×500
= m/s=0.5 m/s。对子弹和沙袋,子弹射入沙袋瞬间,m+M10
v2v2
合外力提供向心力,有FT-(m+M)g=(m+M),得悬绳的拉力FT=(m+M)g+(m+M)=102.5
LLN,故C正确。
3.(人教版选修3-5·P17·T6改编)如图所示,在光滑水平面的左侧固定一竖直挡板,A球在水平面上静止放置,B球向左运动与A球发生正碰,B球碰撞前、后的速率之比为3∶1,A球垂直撞向挡板,
碰后原速率返回。两球刚好不发生第二次碰撞,则A、B两球的质量之比为( )
A.1∶2 C.1∶4 答案 D
解析 设A、B的质量分别为mA、mB,B的初速度为v0,取B的初速度方向为正方向,由题意知,两球刚好不发生第二次碰撞,说明A、B碰撞后速度大小相等,方向相反,分别为和
3-,则有mBv0=mA·+mB?-?,解得mA∶mB=4∶1,D正确。 33?3?
考点细研 悟法培优
考点1 动量守恒定律的理解与应用1.动量守恒定律的“六性”
(1)系统性:研究对象是相互作用的两个或多个物体组成的系统。
B.2∶1 D.4∶1
v0
v0v0
?v0?
(2)条件性:必须满足动量守恒定律的适用条件。
(3)矢量性:表达式中初、末动量都是矢量,首先需要选取正方向,分清各物体初、末动量的正、负。
(4)瞬时性:动量是状态量,动量守恒指对应每一时刻的总动量都和初时刻的总动量相等。 (5)相对性:动量守恒定律方程中的动量必须是相对于同一惯性参考系。一般选地面为参考系。
(6)普适性:不仅适用于宏观低速物体组成的系统,也适用于微观高速粒子组成的系统。 2.应用动量守恒定律解题的步骤
例1 如图所示,在足够长的固定斜面上有一质量为m的薄木板A,木板A获得初速度v0后恰好能沿斜面匀速下滑。现将一质量也为m的小滑块B无初速度轻放在木板A的上表面,对于滑块B在木板A上滑动的过程中(B始终未从A的上表面滑出,B与A间的动摩擦因数大于A与斜面间的动摩擦因数),下列说法正确的是( )
A.A、B组成的系统动量和机械能都守恒 B.A、B组成的系统动量和机械能都不守恒 12C.当B的速度为v0时,A的速度为v0
3312
D.当A的速度为v0时,B的速度为v0
33
(1)木板A获得初速度v0后恰好能沿斜面匀速下滑,放上B后A、B组成的
系统合外力为零吗?
提示:由题意知木板A与斜面的动摩擦因数等于斜面倾角的正切值,所以放上B后A、B组成的系统合外力仍为零。
(2)刚放上B后,A、B间发生相对滑动吗? 提示:发生。 尝试解答 选C。
共分享92篇相关文档