当前位置:首页 > 《随机事件的概率》教学设计(优质公开课一等奖)
高一数学065 高一 年级 7 班 教师 方雄飞 学生
《随机事件的概率》教学设计
教学目标:
1、知识与技能(1)了解随机事件发生的不确定性和频率的稳定性,进一步了解频率的意义及频率与概率的区别;(2)在正确理解随机事件发生的不确定性和频率的稳定性的基础上,能辨析生活中的随机现象,澄清生活中对概率的一些错误认识,并通过做大量重复试验,用频率对某些随机事件的概率进行估计。
2、过程与方法: 通过对现实生活中“掷硬币” “游戏公平性”等问题的探究,体会随机事件发生的不确定性和频率的稳定性,理解概率的统计定义在实际生活中的作用,初步掌握利用数学知识思考和解决实际问题的方法。 3、情感、态度与价值观 :通过本节的教学,引导学生用随机的观点认识世界,使学生了解偶然性与必然性的辩证统一,培养辩证唯物主义思想。
教学重点:通过实验活动丰富对频率与概率关系的认识,知道当试验次数较大时,频率稳定于理论概率。 教学难点:收集数据、分析折线图、辩证的理解频率与概率的关系。
教学方法:本节课采用交流合作法,辅之以其它教学法,在探索新知的过程中,通过抛硬币活动来组织学生进行
有效的学习,调动学生的积极性,在实验的过程中实现对数据的收集、整理、观察、分析、讨论,最后通过合作交流等方式,归纳出当试验次数大很大时,事件发生的频率稳定一个常数附近。
教学手段:采用多媒体辅助教学,促进学生自主学习,丰富完善学生的认知过程,使有限的时间成为无限的空间。
事先教师准备图表、电脑、硬币等。
教学流程:
1.创设情境,体会随机事件发生的不确定性
生活实例1:“2016年2月28日,勇士对雷霆,库里超远三分绝杀,将比分定格为121:118” 问题1:你能确定神奇的库里在下一场NBA比赛中的超远三分一定能进吗?
设计意图 从学生感兴趣的生活实例引入,一方面是为了激发学生的听课热情,另一方面也是让学生体会学习随机事件及概率的原因和必要性.
生活实例2:“2016年奥运会张梦雪摘得中国军团首金” 问题2:为什么射击比赛中每一枪都如此扣人心弦呢?
设计意图 :奥运会是社会热点话题,可以增强学生的国家自豪感. 生活实例3:“足球比赛中我们常用抛硬币的方式决定优先权” 问题3:那么能够预先确定谁获胜吗?
设计意图 :回到学生身边.从生活体验中归纳共性,包含了综合、概括、比较等分析过程,是形成概念的有效途径.因此在这一阶段通过创设情境唤起学生的兴趣,使他们身处现实情境中,为后续的思维活动建立起感性认识基础.
2.归纳共性,形成随机事件的概念
问题4:从结果能够预知的角度看,能够发现以上事件的共同点吗?
设计意图 有了前面的基础,此时学生能够有效的概括、抽取上述生活体验的共性.在数学上研究事件时,主要关注在相应的条件下,事件是否发生,因此在提问时明确思考的角度,让学生的思维直指概念的本质,避免不必要的发散.
问题5:以上这些事件都是可能发生也可能不发生的事件.那么在自己的身边,还能找到此类的事件吗?(学生
举例)
问题6:有没有不属于此类的事件呢?(学生举例必然事件和不可能事件) 通过以上思考,发现事件可以分为以下三类: 必然事件 :在一定的条件下必然要发生的事件; 不可能事件:在一定的条件下不可能发生的事件;
随机事件 :在一定的条件下可能发生也可能不发生的事件.
设计意图 在形成概念之前,通过主动的思考,在自己身边举例,巩固学生对随机事件的思维基础;二是通过对比,明确事件分类的标准和概念之间的差异.
例1 判断下列事件哪些是必然事件,哪些是不可能事件,哪些是随机事件? (1) “在地球上,抛出的石头会下落”; (2) “中山市明天天晴”; (3) “如果a>b,那么a-b>0”; (4) “打开电视机,正在播放新闻”;
(5) “手电筒的的电池没电,灯泡发亮”; (6)“某电话机在1分钟内收到2次呼叫”; (7)“没有水份,种子能发芽”; (8) “随机选取一个实数x,得|x|≥0”. (9)“在三角形中,大边对大角”;
(10) “从分别标有号数1,2,3,4,5的5张标签中任取一张,得到4号签”;
必然事件有 ;不可能事件有 ;随机事件有
设计意图 形成概念之后,让学生积极主动参与到课堂,认识新知,初步感受成功的喜悦. 3.深入情境,体会随机事件的规律性
我们看到,随机事件在生活中是广泛存在的,时刻影响着我们的生活.正因为体育比赛中充满了随机事件,而让比赛更加刺激、精彩,让观众更加紧张投入;因为每天的校园生活充满了随机事件,而让我们的校园生活兴奋而新奇;也正因为人生道路上充满了随机事件,而让我们每个人的人生各有各的不同,各有各的精彩.
同时,我们身边也有一些富有悲凉色彩的随机事件,那我们是不是因此而心中时刻都充满着恐慌呢?实现自己的目标这也是个随机事件,那么我们是不是就因此而放弃了今天的努力了呢?
设计意图 这一段教学首先呈现了随机事件带给人们丰富多彩的生活,体现了教师对数学、对概率的喜爱和热情,传递给学生学习数学的积极态度.其次,这段教学既是对前面内容的总结,也引出了下面研究思考的方向,起到承上启下的作用,同时也就揭示了人们认识随机事件的过程,以及随机事件随机性和规律性之间的联系.第三,通过反问,使学生意识到,生活的不断体验已经使我们积累了一些对随机事件规律性的感性认识,那么接下来就是要挖掘出这些感性认识下面的理性依据,以这种方式激发学生对生活经验的反思和探究,同时帮助学生形成正确的世界观.
回到最开始的三个实例中,反思其中包含着哪些对随机事件规律性的感性认识,以此为基础进行理性思考.
问题7:提出问题,引发思考:
(1)既然三分球的命中有随机性,为什么要选择库里来投这个决定成败的三分球而不是其他队员呢? (2)既然每个人参加奥运会获得金牌都是随机事件,为什么派张梦雪来参加奥运会而不是其他人?
(3)为什么抛硬币决定球权对双方是公平的?
再次抽取共性,形成抽象概念:从同学们的回答中,可以体会到,事件发生的可能性有大小之分,是可以比较的,从而抽象出可以用数量表示事件发生的可能性的大小,这就是概率的意义.
设计意图 借助前面的事例,减少课堂的阅读量和重复思维量,提高了课堂效率,增强了规律性与随机性的对比.并
且三个问题在学生看来是很容易回答的,这恰恰说明概率的雏形在生活实践中已经产生,同时这样的问题也更有利于学生对概率概念本身的把握,抽象过程就变得顺其自然了. 4.层层深入,形成概率的统计定义
问题8:生活中“库里投三分球命中的概率高于其他球员”的经验是如何得到的呢?(库里三分球命中率高),那么三分球命中率是如何计算的呢?(三分球命中率=投中次数/投篮次数),实际上在数学里三分球命中率是三分球命中这个事件的频率,从而引出数学中频数与频率的概念.
设计意图 基于初中的学习,有些学生具备了用试验频率来估计概率的经验.但对于“为什么可以这样做”,缺乏思考,导致在分析问题、分析数据时会出现偏差.因此从学生熟悉的命中率入手,首先说明这种方法来源于生活经验,为接下来的探讨做准备.
问题9:足球比赛中我们常用抛硬币的方式决定哪队先开球,这样公平吗?(公平)说明我们认为这样的情况下每一对开球的概率都是0.5,现在就让我们通过一个数学实验验证一下.
[数学试验]在平整的桌面上,随机抛一枚硬币20次,统计正面向上的次数与频率.
设计意图:从学生身边的事情出发,更容易引发学生的兴趣,同时,学生的亲身体验和直观观察,更有利于概念的形成,以及对规律的认同.激发学生分析随机事件规律性的主动性. 问题10: 每一组试验的结果一致吗?为什么?(随机试验的随机性)
问题11: 如果我们合并前两组的实验结果,相当于我们一共进行了40次试验,我们可以统计这40次试验,正面向上的频率,以此类推,我们就可以统计出我们进行60次,80次……试验,正面向上出现的频率,再形成散点图,大家观察频率值有什么规律性?( 形成概率的统计定义:一般地,在相同条件下,大量重复进行同一试验时,随机事件A发生的频率会在[0,1]中的某个常数附近摆动,随着试验次数的增加,频率逐渐稳定于这个常数,这时就把这个常数叫做随机事件A的概率,记做P(A) )
设计意图 这一段是本节内容的难点,需要把对数据、图表的直观印象转化为抽象的概率定义.之所以可以用大量重复试验的频率来估计概率,是因为在数、图中累积数据的频率体现出了一定的“稳定性”,即规律性,使得我们能够从图表中大致判断出事件概率的范围、具体大小.这里首先还是坚持从多组数据中抽取共性来形成概念,其次注重数与形的相互转化,把图形上的规律用数去描述,把数据上的规律用图形去验证,更为清晰的表现出频率在常数附近摆动的规律.
问题12:随机事件出现的频率会随试验的不同而不同吗?(频率的随机性)
问题13: 随机事件出现的概率会随试验的不同而不同吗?(概率是客观存在的确定的常数) 问题14: 随机事件出现的频率与概率有什么联系吗?(概率是频率的稳定值,频率是概率的估计值)
5. 学以致用,正确理解概率的意义
例2、某射手在同一条件下进行射击,结果如下表所示: 射击次数n 10 20 50 100 200 500 击中靶心次数m 8 19 44 92 178 455 击中靶心的频率mn (1)填写表中击中靶心的频率;
(2)这个射手射击一次,击中靶心的概率约是什么?
练习1、下列事件:
(1)口袋里有伍角、壹角、壹元的硬币若干枚,随机地摸出一枚是壹角。 (2)在标准大气压下,水在90℃沸腾。 (3)射击运动员射击一次命中10环。
(4)同时掷两颗骰子,出现的点数之和不超过12。
其中是随机事件的有 ( ) A、 (1) B、(1)(2) C、(1)(3) D、(2)(4)
练习2、抛掷一枚硬币出现正面的概率为0.5,下列说法对吗?
(1) 那么连续两次抛掷一枚质地均匀的硬币,一定是一次正面朝上,一次反面朝上。 (2) 连续出现5次正面向上,那么下次出现反面向上的概率大于0.5.
设计意图 通过对实例的归纳和辨析对新问题的特性形成陈述性的理解,继而与原有的知识结构相互联系,帮助学生体会随机事件的随机性和规律性是不矛盾的,是辨证统一的,即随机事件在一次试验中体现出随机性,在大量重复试验中体现出规律性. 6.小结
问题15:学习了这节课,你都有哪些收获?
通过本节课的学习,其实,除了知识层面的收获之外,我想我们每一位同学都深刻体会到了,虽然很多现象貌似是偶然,个别的,但是透过现象看本质,这一个个现象背后往往隐藏着重要的规律,只是需要我们拥有一颗勇于探索与实践的心,那就离它更近一步了。
设计意图:通过本节课的学习让学生体会其中蕴含的哲学道理以及培养学生的探索与实践的精神与意识. 7.作业 8.板书设计
共分享92篇相关文档