当前位置:首页 > 攻读博士学位研究计划(范文) - 图文
Phaeocystis globosa impedes release of chitinous star ‐ like structures: quantification using single cell approaches[J]. Environmental Microbiology, 2012, 14(8):doi:10.1111/j.1462-2920.2012.02838.x.
[46] Frada M J, Bidle K D, Probert I, de Vargas C. In situ survey of life cycle phases of the
coccolithophore Emiliania huxleyi (Haptophyta)[J]. Environmental Microbiology, 2012, 14(6):1558-1569.
[47] von Dassow P, van den Engh G, Iglesias-Rodriguez D, Gittins J R. Calcification state of
coccolithophores can be assessed by light scatter depolarization measurements with flow cytometry[J]. Journal of Plankton Research, 2012, 34(5):doi:10.1093/plankt/fbs1061.
[48] Giovannoni S J, Britschgi T B, Moyer C L, Field K G. Genetic diversity in Sargasso Sea
bacterioplankton[J]. Nature, 1990, 345:60-63.
[49] D??ez B, Pedrós-Alió C, Massana R. Study of genetic diversity of eukaryotic picoplankton in
different oceanic regions by small-subunit rRNA gene cloning and sequencing[J]. Applied and Environmental Microbiology, 2001, 67(7):2932-2941.
[50] McDonald S M, Sarno D, Scanlan D J, Zingone A. Genetic diversity of eukaryotic
ultraphytoplankton in the Gulf of Naples during an annual cycle[J]. Aquatic microbial ecology, 2007, 50(1):75-89.
[51] Iglesias-Rodriguez M D, Schofield O M, Batley J, Medlin L K, Hayes P K. Intraspecific
genetic diversity in the marine coccolithophore Emiliania huxleyi (Prymnesiophyceae): the use of microsatellite analysis in marine phytoplankton population studies[J]. Journal of Phycology, 2006, 42(3):526-536.
[52] Sch?fer H, Abbas B, Witte H, Muyzer G. Genetic diversity of ?satellite?bacteria present in
cultures of marine diatoms[J]. FEMS microbiology ecology, 2002, 42(1):25-35.
[53] D??ez B, Pedrós-Alió C, Marsh T L, Massana R. Application of denaturing gradient gel
electrophoresis (DGGE) to study the diversity of marine picoeukaryotic assemblages and comparison of DGGE with other molecular techniques[J]. Applied and Environmental Microbiology, 2001, 67(7):2942-2951.
[54] Marie D, Zhu F, Balagué V, Ras J, Vaulot D. Eukaryotic picoplankton communities of the
Mediterranean Sea in summer assessed by molecular approaches (DGGE, TTGE, QPCR)[J]. FEMS microbiology ecology, 2006, 55(3):403-415.
[55]
鲍磊, 陈纪新, 黄邦钦. 应用变性梯度凝胶电泳研究厦门西海域超微型真核浮游生物多 样性[J]. 海洋环境科学, 2008, 26(6):504-509.
[56] Riegman R, Kraay G. Phytoplankton community structure derived from HPLC analysis of
pigments in the Faroe-Shetland Channel during summer 1999: the distribution of taxonomic groups in relation to physical/chemical conditions in the photic zone[J]. Journal of Plankton Research, 2001, 23(2):191-205.
[57]
Moon ‐ van der Staay S Y, Tzeneva V A, Van Der Staay G W, De Vos W M, Smidt H, Hackstein J H. Eukaryotic diversity in historical soil samples[J]. FEMS microbiology ecology, 2006, 57(3):420-428.
[58] Ebenezer V, Medlin L K, Ki J-S. Molecular detection, quantification, and diversity evaluation
of microalgae[J]. Marine biotechnology, 2012, 14:129-142.
[59] [60]
Groben R, Medlin L. In situ hybridization of phytoplankton using fluorescently labeled rRNA probes[J]. Methods in enzymology, 2005, 395:299-310.
Bleijswijk J D, Kempers R S, Veldhuis M J, Westbroek P. Cell and growth characteristics of
第 20 页 共 22 页
types A and B of Emilania huxleyi (Prymnesiophyceae) as determined by Flow Cytometry and chemical analyses[J]. Journal of Phycology, 2004, 30(2):230-241.
[61]
Xu Y, Boucher J M, Morel F M. Expressiong and diversity of alkaline phosphatase ehap1 in Emiliania huxleyi(Prymnesiophyceae)[J]. Journal of Phycology, 2010, 46(1):85-92.
[62] Eller G, T?be K, Medlin L K. Hierarchical probes at various taxonomic levels in the
Haptophyta and a new division level probe for the Heterokonta[J]. Journal of Plankton Research, 2007, 29(7):629-640.
[63]
álvarez S, Zapata M, Garrido J L, Vaz B. Characterization of [8-ethyl]-chlorophyll c3 from Emiliania huxleyi[J]. Chemical Communications, 2012, 48(44):5500-5502.
[64] Simon N, LeBot N, Marie D, Partensky F, Vaulot D. Fluorescent in situ hybridization with
rRNA-targeted oligonucleotide probes to identify small phytoplankton by flow cytometry[J]. Applied and Environmental Microbiology, 1995, 61(7):2506-2513.
[65] Bertin M J, Zimba P V, Beauchesne K R, Huncik K M, Moeller P D R. The contribution of
fatty acid amides to Prymnesium parvum carter toxicity[J]. Harmful Algae, 2012, 20:117-125.
[66] Bertin M J, Zimba P V, Beauchesne K R, Huncik K M, Moeller P D R. Identification of toxic
fatty acid amides isolated from the harmful alga Prymnesium parvum carter[J]. Harmful Algae, 2012, 20:111-116.
[67] Vasas G, M-Hamvas M, Borics G, Gonda S, Máthé C, Jámbrik K, Nagy Z L. Occurrence of
toxic Prymnesium parvum blooms with high protease activity is related to fish mortality in Hungarian ponds[J]. Harmful Algae, 2012, 17:102-110.
[68] Diercks S, Metfies K, Medlin L K. Molecular probe sets for the detection of toxic algae for
use in sandwich hybridization formats[J]. Journal of Plankton Research, 2008, 30(4):439-448.
[69] T?be K, Eller G, Medlin L K. Automated detection and enumeration for toxic algae by
solid-phase cytometry and the introduction of a new probe for Prymnesium parvum (Haptophyta: Prymnesiophyceae)[J]. Journal of Plankton Research, 2006, 28(7):643-657.
[70] Using new techniques for re-evaluating the physiological ecology of coccolithophores(From
the Dynamic Green Ocean Project-Publications)
[71] Grover J P, Baker J W, Roelke D L, Brooks B W. Current status of mathematical models for
population dynamics of Prymnesium parvum in a Texas reservoir[J]. Journal of the American Water Resources Association, 2010, 46(1):92-107.
[72] Grover J P, Roelke D L, Brooks B W. Modeling of plankton community dynamics
characterized by algal toxicity and allelptathy-a focus on historical Prymnesium parvum blooms in a Texas reservoir[J]. Ecological Modelling, 2012, 227:141-147.
[73] [74] [75]
Umphres-IV G D, Roelke D L, Netherland M D. A chemical approach for the mitigation of Prymnesium parvum blooms[J]. Toxicon, 2012, 60:1235-1244. 孟紫强. 生态毒理学[M]. 北京: 高等教育出版社, 2009. 李冠国, 范振刚. 海洋生态学[M]. 北京: 高等教育出版社, 2004.
copepod predation on protozoa: evidence from incubation experiments[J]. Marine Ecology-Progress Series, 1993, 102:51-51.
[77] Jakobsen H H, Tang K W. Effects of protozoan grazing on colony formation in Phaeocystis
globosa (Prymnesiophyceae) and the potential costs and benefits[J]. Aquatic microbial ecology, 2002, 27(3):261-273.
[78]
Tang K, Jakobsen H H, Visser A. Phaeocystis globosa (Prymnesiophyceae) and the planktonic
[76] Hansen F, Reckermann M, Klein Breteler W, Riegman R. Phaeocystis blooming enhanced by
第 21 页 共 22 页
food web: feeding, growth, and trophic interactions among grazers[J]. Limnology and oceanography, 2001, 46(8):1860-1870.
[79]
Tang K W. Grazing and colony size development in Phaeocystis globosa (Prymnesiophyceae): the role of a chemical signal[J]. Journal of Plankton Research, 2003, 25(7):831-842.
[80] Aguilar-May B, del Pilar Sánchez-Saavedra M. Growth and removal of nitrogen and
phosphorus by free-living and chitosan-immobilized cells of the marine cyanobacterium Synechococcus elongatus[J]. Journal of Applied Phycology, 2009, 21(3):353-360.
[81] Covarrubias S A, de-Bashan L E, Moreno M, Bashan Y. Alginate beads provide a beneficial
physical barrier against native microorganisms in wastewater treated with immobilized bacteria and microalgae[J]. Applied microbiology and biotechnology, 2012, 93(6):2669-2680.
[82]
齐 雨 藻, 沈 萍 萍 . 棕 囊 藻属 (Phaeocystis) 的 分 类与 生 活 史 [J]. 热 带 亚热 带 植 物 学 报, 2001, 9(2):174-184.
[83] 徐松立, 黄邦钦. 光合色素标记法测定不同类群浮游植物的光合速率和生长速率[J]. 台
湾海峡, 2010, 29(4):478-487.
[84] Manning S R, La Claire J W. Prymnesins: Toxic metabolites of the golden alga, Prymnesium
parvum Carter (Haptophyta)[J]. Marine drugs, 2010, 8(3):678-704.
[85] [86]
陈纪新, 黄邦钦, 刘媛, 曹振锐, 洪华生. 应用特征光合色素研究东海和南海北部浮游植 物的群落结构[J]. 地球科学进展, 2006, 21(7):738-746.
彭喜春, 刘洁生, 杨维东. 赤潮藻毒素生物合成研究进展[J]. 热带亚热带植物学报, 2006, 14(1):81-86.
第 22 页 共 22 页
共分享92篇相关文档