当前位置:首页 > 湖南省岳阳市第一中学2017-2018学年高二下学期期末考试数学(理)试题含答案
2∴P(Y?2)?C5?0.52?(1?0.5)3?0.3125.
(Ⅱ)X的可能取值为4,5,6,7,8,
则:P(X?4)?0.22?0.04,P(X?5)?2?0.2?0.5?0.2,
P(X?6)?0.52?2?0.2?0.3?0.37,P(X?7)?2?0.3?0.5?0.3,P(X?8)?0.32?0.09,
∴X的分布列为:
X的数学期望E(X)?4?0.04?5?0.2?6?0.37?7?0.3?8?0.09?6.2.
21.解:(1)∵f(x)?xlnx?12mx?x(m?R)在(0,??)上是减函数, 2∴f'(x)?lnx?mx?0在定义域(0,??)上恒成立,
lnx)max, xlnx1?lnx设h(x)?,则h'(x)?,
xx2∴m?(由h'(x)?0,得x?(0,e),由h'(x)?0,得x?e, ∴函数h(x)在(0,e)上递增,在(e,??)上递减,
11,∴m?. ee1故实数m的取值范围是[,??).
e∴h(x)max?h(e)?证明:(2)由(1)知f'(x)?lnx?mx,
∵函数f(x)在(0,??)上存在两个极值点x1,x2,且x1?x2, ∴??lnx1?mx1?0,
?lnx2?mx2?0lnx1?lnx2?m??x1?x2lnx1?lnx2lnx1?lnx2?则?,∴, ?x?xx?xlnx?lnx121212?m??x1?x2?x1x?1)?ln1xx2x?x2x∴lnx1?lnx2?1, ?ln1?2xx1?x2x21?1x2(设t?(t?1)?lntx1, ?(0,1),则lnx1?lnx2?t?1x2要证lnx1?lnx2?2, 只需证
(t?1)?lnt2(t?1)2(t?1)?2,只需证lnt??0, ,只需证lnt?t?1t?1t?12(t?1)14(t?1)2构造函数g(t)?lnt?,则g'(t)????0,
t?1t(t?1)2t(t?1)22(t?1)在t?(0,1)上递增, t?12(t?1)?0, ∴g(t)?g(1)?0,即g(t)?lnt?t?1∴g(t)?lnt?∴lnx1?lnx2?2.
22.解:(Ⅰ)根据x??cos?、y??sin?,求得曲线C的直角坐标方程为y2?4x, 用代入法消去参数求得直线l的普通方程x?y?2?0.
??x??2??(Ⅱ)直线l的参数方程为:??y??4???22t2(为参数)
, t2t22代入y?4x,得到t?122t?48?0,设M,N对应的参数分别为t1,t2,
则t1?t2?122,t1?t2?48,∴PM?PN?t1?t2?122. ??x?3,x?1?23.解:(1)由于f(x)???3x?1,?1?x?1,
?x?3,x??1?当x?1时,函数的最大值为?1?3??4, 当?1?x?1时,f(x)?f(?1)?3?1?2, 当x??1时,f(x)max?f(?1)??1?3?2,
所以k?f(x)max?f(?1)?2.
a2?c2?b2?2,有(a2?b2)?(b2?c2)?4, (2)由已知
22222因为a?b?2ab(当a?b取等号),b?c?2bc(当b?c取等号),
所以(a2?b2)?(b2?c2)?4?2(ab?bc),即ab?bc?2, 故[b(a?c)]max?2.
共分享92篇相关文档