当前位置:首页 > 高等代数习题第二章
习题2-1
一、判断题
若在n阶行列式中等于零的元素个数超过n2?n个,则这个行列式的值等于零。( )
二、单选题
2?101.若行列式1x?2?0, 则x=( )
3?12A. –2 B. 2 C. -1 D. 1
00?0100?102.n阶行列式?????的值为( )
01?0010?00A. (?1) B. (?1)n1n(n?1)2 C. (?1)1n(n?1)2 D. 1
3.设Aij是行列式A的元素aij?i,j?1,2,?,n?的代数余子式,当i?j时下列各式中错误的是( )
A. A?ai1Aj1?ai2Aj2??ainAjn B. A?ai1Ai1?ai2Ai2??ainAin C. A?a1jA1j?a2jA2j??anjAnj D. 0?ai1Aj1?ai2Aj2??ainAjn
0b4.行列式
00ac0000d000的值等于( ) efA. abcdef B. ?abdf C. abdf D. cdf
a105.
a200c10c2b10b200d1?( ) 0d2A. a1c1b2d2?a2b1c2d1 B. (a2b2?a1b1)(c2d2?c1d1) C. a1a2bb12c1c2d1d2 D. (a1b2?a2b1)?c1d2?c2d1?
a16.设行列式D?a2a3
b1b2b3c1c1c2, 则 c2c3c3b1?2c1b2?2c2b3?2c31
a1?2b1?3c1a2?2b2?3c2 =( ) a3?2b3?3c3A. -D B. D C. 2D D. -2D
a117.如行列式a21a31a12a22a32a133a31a23?d, 则2a21a33?a113a322a22?a123a332a23=( ) ?a13A. -6d B. 6d C. 4d D. -4d
三、填空题
1091. 四阶行列式
748630520010=( ). 002.排列a1a2a3a4a5的逆序数等于3,排列a5a4a3a2a1的逆序数等于( ).
3.n阶行列式A的值为c,若将A的第一列移到最后一列,其余各列依次保持原来的次序向左移动,则得到的行列式值为( ).
4.n阶行列式A的值为c,若将A的所有元素改变符号,得到的行列式值为( ). 5.n阶行列式A的值为c,若将A的每个第?i,j?个元素aij换到第?n?i?1,n?j?1?个元素的位置上,得到的行列式的值为( ). 6.n阶行列式A的值为c,若将A的每个aij换成??1?7.n阶行列式A的值为c,若将A的每个aij换成?b?i?jaij,则得到的行列式的值为( ). aij?b?0?,则得到的行列式的值为
i?j( ).
8.n阶行列式A的值为c,若从第二列开始每一列加上它前面的一列,同时对第一列加上A的第n列,则得到的行列式的值为( ).
习题2-2
1.利用对角线法则计算下列三阶行列式:
201abc(1)1?4?1; (2)bca
?183cab1(3)aa21bb21xc; (4)yc2x?yyx?yxx?yx y2.按自然数从小到大为标准次序,求下列各排列的逆序数: (1) 1234; (2)4132;
(3) 13?(2n?1)24?(2n);(4) 13?(2n?1)(2n)(2n?2)?2 . 3.计算下列各行列式:
2
?4?1(1)??10??0125120214??21?3?12??; (2)??120???7??5042361???abac1??;bd?cd(3)??2??cf??bf2?ae?de?? ?ef???a10??1b1 (4)??0?1c??00?11a (7) 2aa41bb2b41cc2c40?ax?byay?bzaz?bxa2abb2?0?(5) 2aa?b2b ;(6) ay?bzaz?bxax?by 1?az?bxax?byay?bz111?d?10xd (8) ??2d00d4anan?1x?10?1?0???00x00? ?1x?a1??an?2?a24.计算下列各行列式(Dk为k阶行列式):
a1?1a(1) Dn?,其中对角线上元素都是a,未写出的元素都是0;
anan?1(a?1)n?(a?n)n(a?1)n?1?(a?n)n?1?a?11????a?n1xa?aax?a(2) Dn?;(3) Dn?1??????aaa?x1
5.用克莱姆法则解下列方程组:
?1,?5x1?6x2?x1?x2?x3?x4?5,?x?5x?6x?0,123?x?2x?x?4x??2,??1?234(1)?(2)?x2?5x3?6x4?0,
2x?3x?x?5x??2,234?1?x3?5x4?6x5?0,??3x?x?2x?11x?0;234?1?x4?5x5?1.???x1?x2?x3?0?6. 问?,?取何值时,齐次线性方程组?x1??x2?x3?0有非零解?
?x?2?x?x?023?1?(1??)x1?2x2?4x3?0?7. 问?取何值时,齐次线性方程组 ?2x1?(3??)x2?x3?0
?x?x?(1??)x?023?1有非零解?
3
习题2-3
a11a211. 确定六阶行列式D=
a12a22a32a42a52a62a13a23a33a43a53a63a14a24a34a44a54a64a15a25a35a45a55a65a16a26a36中以下各乘积的符号: a46a56a66a31a41a51a61⑴ a23a31a42a56a14a14a65 ⑵ a21a13a32a55a64a46
2?2614?4?22?52310?41737?22.计算行列式
D?
3.计算行列式
a1?a1?a1??a1a20?a2??a2a3a30??a3?????ananan?0a11?111a1?11?????? 111?a1111?1a,
a11a12a22??a1n?a2n??4.设D?a21?an1试用D表示下列行列式之值:
an2?ann1)
a21a31?an1a11a22a32?an2ann?????a2na3n?anna1na1n?a12?a22???an2a11a21?an1; 2)a2n?ann;
5.利用定义计算下列行列式.
a11a12a22?0?a1,n?1?a2.n?1???00a1n0?001)
a21?an?1,1an,1 2)
an?1,2?010?0002?0????? 000?n?1n00?0
习题2-4
1.计算行列式
21D1?231200342512?13, D2?1413171?5.
16949256427343?125 4
2. 计算行列式.
12⑴
23344111; ⑵23414936104916 ; ⑶
1625 34121410209162536412315153516253649
32243.
设A?5312,求 A41?A42?A43?A44.
111164784. 计算行列式
1?100?00?11??1?20?00⑴
0?11??2?3?00??????? ;
0000?1??n?1?n0000??11??na00?00a0a0?0a01?x2x00a011x2?a0⑵ xx1?x2??????? (2n阶) ⑶ 21200a?a00??0a0?0a0xnx1xnx2a00?00a
5.
计算行列式
abcdD?aa?ba?b?ca?b?c?da2a?b3a?2b?c4a?3b?2c?d.
a3a?b6a?3b?c10a?6b?3c?d
6.计算n阶行列式 1?a111?111?a21?1 111?a3?1 ?????111?1?an
5
x1xnx2xn?1?x2n? ???
共分享92篇相关文档