当前位置:首页 > 第二章导数与微分习题册答案
y''?2y'?2y?2ecosx?2?esinx?ecosx??2esinx?0
xxxx
第四节 隐函数与参数方程求导法则
1.填空题
(1)1 (2)
cost1?sint
y?eex?yx?y2.(1) y?xy??ex?y?1?y?? y???x
(2) 3x?3yy????ay?3axy???0 y???22ay?x22y?ax
(3)y?xy??ey??y1x?1yy? y??x?yyx?e?1y
(4)
12x?12?12y?12y??0 y???yx
2xy3、e(y?xy?)?xy1yy??1x?1?0 y???y?y(x?1)e?x?1??xye2xy?1) y?(0)?e?1e2
4、6x?6yy??9(y?xy?)?0 y??4565229y?6x26y?9x y??(1,2)?54x?445
切线方程:y?x? 法线方程:y??bxay221342
2225、(1)2bx?a2yy??0 y???22 y???bx?abyaye2y43
(2)y??e?xey? y??yyeyy1?xe y??(2?xe)y3y(1?xe)
6、(1)lny?1nlnx(x?1)(x?2)22 y??x?6x?x?2nx(x?1)(x?2)sinx232nx(x?1)(x?2)22
(2)lny?sinxlnx y??x7、(1)
dydx??1ty(lnxcosx?sinxx)
dydtecost1?esintyy(2)y??(ey?sint?ecost)?0
dydyecostyyy?
yecostdt1?esint? ??ydxdx2t?22(t?1)(1?esint)dt1d228、
dydx?1?t11?t2?1?t???1t
dydx22?()?dtdx?dxdxdxdtddy(dy)?1tt2??21?tt32
1?t9、f?(0)?limx?0ln(1?x)x??lim?x?0ax?bx?cx2?1
∴c?0,b?1
?1?2ax?b,x?0?1?2ax?1?1∴f?(x)?? f?(0)?lim?1?x?lim???1
x?0x?0xx?1?,x?0?1?x∴a??
12
第五节 函数的微分
1、填空题
(1)(2)0 (3)dy?0.11 (3x?1)dx
?x?121221x?1??(4)dx
coswxw
(5)?e?2x (6)2x (7)sec2x (8)?2sin2xf?(cos2x)
2、选择题
(1)B (2)C (3)A (4)D
3、(1)y??e?x[sin(3?x)?cos(3?x)] dy?e?x[sin(3?x)?cos(3?x)]dx (2)y??2ln(1?x)[ln(1?x)]????lnxx?2ln(1?x)x?12 dy?32ln(1?x)x?12dx
3(3)y???1x(lnx)2?(lnx)?(lnx)?xx(lnx)22 dy?(lnx)?(lnx)?xx(lnx)22dx
(4)y??ex(sin2x?sin2x) dy?ex(sin2x?sin2x)dx (5)y??tanx?xsec2x dy?(tanx?xsec2x)dx (6)y??dy?1lnlnx1(lnlnx)??dx
11(lnx)??1xlnxlnlnxlnlnxlnx
xlnxlnlnx(7)?sin(x?y)(1?y?)?eyy??0 y??2xsin(x?y)e?sin(x?y)y dy?sin(x?y)e?sin(x?y)ydx
4、y??3xcosx?xsinx?23 dy?x?1?(2?3cos1?sin1)dx
5、dy?[f?(sinx)cosx?f?(x)cosf(x)]dx 6、eylnx?exlny?sinx
2 eylnx(y?lnx?y1x)?exlny(lny?xyy?)?2xcosx y??2ylny?xyxy?1y?2xcosxx?12xlnx?xy
dy?ylny?xyxy?1y?2xcosxx?12xlnx?xydx
27、f(x)?tanx f?(x)?secx f?(?)?4
232424?tan136?tan(???)?tan??4????0.6156
3453451f(x)?x3 f?(1)?13 31.02?31?0.02?1?13?0.02?1.0067
8、V??Rh V??2?hR V??R?R?2?hR?
?2?V?V?(R?)?R?2?3.14?9?0.15?0.001?0.00848
每个元器件需的铜约为0.00848?8.9?0.07545
第六节 导数概念在经济学中的应用
1、填空题
(1)?2?x?xex 2?x (2)?1
(3)增加 28.6
2、(1)固定成本为200,可变成本为4Q?0.05Q2 (2)边际成本函数为C?(Q)?4?0.1Q
C?(24)?4?0.1?200?24
当产量Q?200时的边际成本为24,在经济上说明在产量为200的基础上,再增加一单位产品,总成本要增加24元.
(3)因国家对该厂征收的固定税收与产量Q无关,这种固定税收可列入固定成本,因而对边际成本没有影响.例如,国家征收的固定税收为100,则 总成本 C(Q)?(200?100)?4Q?0.05Q 边际成本函数仍为 C?(Q)?4?0.1Q. 3、总成本函数C(x)?0.01x?10x?1000 总收入函数R(x)?Px?30x
总利润函数L(x)?R(x)?C(x)?30x?0.01x?10x?1000??0.01x?20x?1000 边际成本 C?(x)?0.02x?10 边际收入 R?(x)?30
边际利润 L?(x)??0.02x?20
令L?(x)?0,得?0.02x?20?0,x?1000.即每月产量为1000个单位时,边际利润为零.这说明,当月产量为1000个单位时,再多生产一个单位产品不会增加利润. 4、(1)R(Q)?PQ?10Q?2515Q,R(P)?22222R(Q)Q?10?15Q,
R?(Q)?10?Q
(2)R(20)?120,R(20)?6,R?(20)?2.
共分享92篇相关文档