当前位置:首页 > 随机过程习题答案A - 图文
P?X(t??t)?k???P{X(t)?k,X(?t)?0}?P{X(t)?k?1,X(?t)?1}?? ?P{X(t)?k}?1??Pr?t??P{X(t)?k?1}?Pr?t?o(?t)令?t?0,有
dPk(t)??PrPk(t)??PrPk?1(t) dt解得
(?Prt)k??PrtP?X(t)?k??e
k!(2)由(1)知,X(t)服从参数为?Pr的泊松分布。
P232/15. 解:(1)以?(t)表示t时刻系统中不正常工作的信道数,则{?(t),t?0}是一马氏过程,其状态空间为:S?{0,1,2},Q矩阵为:
??2??Q????0?0???(???)?? 2??2???2?(2)令:
?p00(t)?P(t)??p10(t)?p(t)?20p01(t)p11(t)p21(t)p02(t)??p12(t)? p22(t)??则前进方程为:
?dP(t)?P(t)Q? dt???P(0)?I3?3(3)令:
pj(t)?P{?(t)?j}
??p(t)?(p0(t),p1(t),p2(t)),p(0)?(1,0,0)
写出福克-普朗克方程:
??dp(t)??p(t)Q? dt????p(0)?(1,0,0)即有:
?dp0(t)?dt??2?p0(t)??p1(t)?dp(t)??1?2?p0(t)?(???)p1(t)?2?p2(t) ?dt?dp2(t)??p1(t)?2?p2(t)?dt???p0(0)?1,p1(0)?0,p2(0)?0做Laplace变换,令:
?n(s)?L(pn(t)),n?0,1,2
则有:
?s?0(s)?1??2??0(s)???1(s)??s?1(s)?2??0(s)?(???)?1(s)?2??2(s) ?s?(s)???(s)?2??(s)12?2由上解得:
s2?(3???)s?2?2ABC?0(s)????
s[s?2(???)][s?(???)]ss?2(???)s?(???)其中:
?2?22??A?,B?,C?
(???)2(???)2(???)2因此求
p0(t)?L?1(?0(s))
即可。
(4)P{TA?t,TB?t}?P{TA?t}P{TB?t}?e??te??t?e?2?t
P233/16. 解:(1)令?(t)表示t时刻系统中正在用电的焊工数,则{?(t),t?0}是一马氏过程,其状态空间为:S?{0,1,2,?,m}。 (2)Q矩阵为:
??m????Q??0????0?(3)令:
m?00????m??[??(m?1)?](m?1)?02??[2??(m?2)?](m?2)??0?0?00??0?0? ????m???pj(t)?P{?(t)?j}
??p(t)?(p0(t),p1(t),p2(t),?,pm(t)),p(0)?(1,0,0,?,0)
写出福克-普朗克方程:
??dp(t)??p(t)Q? dt????p(0)?(1,0,0,?,0)1?(m?1)(4)画出状态转移率图,可得t??时的平衡方程:
?m?p0??p1?[(m?1)???]p?m?p?2?p102?????[(m?n)??n?]pn?(m?n?1)?pn?1?(n?1)?pn?1 ?????p?m?pm?mm?1?p?1?n??n?0由此可得:
(m?n)?pn?(n?1)?pn?1?(m?n?1)?pn?1?n?pn???m?p0??p1?0即有:
(m?n)?pn?(n?1)?pn?1?0
pn?1?(m?n)???pn,n?0,1,2,?,m (n?1)?由此可以求得:
(m?n?1)(m?n)m???n?????pn????????p?Cp0,n?0,1,?,m 0m?????nn?11??????nn由 ?pn?1,即可确定p0,最终得到所要的结果。
n?0m
P233/17. 解:(1)由于:?n?n??a,?n?n?可以得到此过程的Q矩阵:
??a????0Q???????a?(??a??)2??n??0002??a?????0??0??? ??n??a????0(?,?,a?0)
??a?(2??a?2?)??[n(???)?a]令:
pj(t)?P{?(t)?j}
?p(t)?(p0(t),p1(t),p2(t),?,pn(t),?)
写出福克-普朗克方程:
?dp0(t)?dt??ap0(t)??p1(t)??dp1(t)?ap(t)?[(???)?a]p(t)?2?p(t)012?dt?dp(t)?2?(??a)p1(t)?[2(???)?a]p2(t)?3?p3(t) ?dt???dp(t)?n?[(n?1)??a]pn?1(t)?[n(???)?a]pn(t)??dt??(n?1)?pn?1(t)???初始条件:pn0(0)?1,pj(0)?0(j?n0)。
(2)由数学期望的定义:
E{?(t)}??M?(t)??npn(t)??npn(t)
n?0n?1??由此,我们有:
dM?(t)dt?n?1??dp(t)d???npn(t)??nn?dtn?1dtn?1??n?[(n?1)??a]pn?1(t)?[n(???)?a]pn(t)?(n?1)?pn?1(t)???napn?1(t)??napn(t)?n?1n?1???n?(n?1)?pn?1(t)?n(???)pn(t)?(n?1)?pn?1(t)?n?1?
??apn(t)??n?(n?1)?pn?1(t)?n(???)pn(t)?(n?1)?pn?1(t)?n?0n?1???a?(???)?npn(t)?a?(???)M?(t)n?1?即可得到描写M?(t)的微分方程:
?dM?(t)?a?(???)M?(t)? dt??M?(0)?n0?(3)解上面的微分方程,我们有:
M?(t)?n0e(???)t?a1?e(???)t ?????
共分享92篇相关文档