云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 江苏省南京市、盐城市、淮安市(淮安三模)高三数学第二次模拟考试试题(含解析)苏教版

江苏省南京市、盐城市、淮安市(淮安三模)高三数学第二次模拟考试试题(含解析)苏教版

  • 62 次阅读
  • 3 次下载
  • 2025/12/10 20:46:51

由已知可得f (2)f (n)=f (2n)+f (n+1),而f(2)=3,f (2n)≥2n+1,

所以3 f (n)≥f (n+1)+2n+1,即f(n+1)≤3 f (n)-2n-1. 下面证明:f (n)=n+1.

因为f (1)=2,所以n=1时,命题成立. 假设n=k(k≥1)时命题成立,即f(k)=k+1, 则f(k+1)≤3f (k)-2k-1=3(k+1)-2k-1=k+2, 又f(k+1)≥k+2,所以f(k+1)=k+2. 即n=k+1时,命题也成立. 所

f (n)=

n+1 ………………………………………10分

解法二:由f(1)=2,f(2)=3,f(3)=4,f(4)=5,猜想f(n)=n+1.

下面用数学归纳法证明:

①当n=1,2,3,4时,命题成立.

②假设当n≤k (k≥4)时,命题成立,下面讨论n=k+1的情形.

若k为奇数,则k+1为偶数,且 根据归纳假设知f( 因为f(2) f( 所以3·

k+1

2

≤k,

k+3

2

≤k. )=

k+1

2

)=

k+1

2

+1=

k+3

2

,f(

k+3

2

k+3

2

+1=

k+5

2

k+1

2

)=f(k+1)+f(

k+1

2

+2-1)=f(k+1)+f(

k+3

2

),

k+3

2

=(k+1)+

k+5

2

,即(k+1)=k+2.

若k为偶数,则k+2,k+4为偶数,且 根据归纳假设知f( 因为f(2) f( 所以3·

k+2

2

≤k,

k+4

2)=

≤k.

+1=

k+2

2

)=

k+2

2

+1=

k+4

2

,f(

k+4

2

k+4

2

k+6

2

k+2

2

)=f(k+2)+f(

k+2

2

+2-1)=f(k+2)+f(

k+4

2

),

k+4

2

=f(k+2)+

k+6

2

,即f(k+2)=k+3.

又k+1=f(k)<f(k+1)<f(k+2)=k+3. 所以f(k+1)=k+2

因此不论k的奇偶性如何,总有f(k+1)=k+2,即n=k+1时,命题也成立 于是对一切n∈N*,f(n)=n+1. 解法三:因为f (n)单调递增,所以f (n+1)>f (n),又f(n)∈Z,

- 21 -

所以f (n+1)≥f (n)+1,又f(1)=2,所以f (n)≥n+1 由已知可得:f (2)f (n)=f (2n)+f (n+1) 而f(2)=3,f (2n)≥2n+1

所以3 f (n)≥f (n+1)+2n+1,即:f(n+1)≤3 f (n)-2n-1

或者f(n+1)-n-2≤3(f (n)-n-1) 所以有f(n+1)-n-2≤3(f (n)-n-1)

≤32

(f (n-1)-n)

≤33

(f (n-2)-n+1) ……

≤3n(f (1)-2)=0 于是f(n+1)≤n+2 又f (n+1)≥n+2

所以f(n+1)=n+2,又f(1)=2 所以f(n)=n+1

- 22 -

  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

由已知可得f (2)f (n)=f (2n)+f (n+1),而f(2)=3,f (2n)≥2n+1, 所以3 f (n)≥f (n+1)+2n+1,即f(n+1)≤3 f (n)-2n-1. 下面证明:f (n)=n+1. 因为f (1)=2,所以n=1时,命题成立. 假设n=k(k≥1)时命题成立,即f(k)=k+1, 则f(k+1)≤3f (k)-2k-1=3(k+1)-2k-1=k+2, 又f(k+1)≥k+2,所以f(k+1)=k+2. 即n=k+1时,命题也成立. 所以f (n)=n+1 ………………………………………10分 解法二:由f(1)=2,f(2)=3,f(3)=4,f(4)=5,猜想f(n)=

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com