当前位置:首页 > 正态分布相关 - 图文
如何检验数据是否服从正态分布
一、图示法
1、P-P图
以样本的累计频率作为横坐标,以安装正态分布计算的相应累计概率作为纵坐标,把样本值表现为直角坐标系中的散点。如果资料服从整体分布,则样本点应围绕第一象限的对角线分布。
2、Q-Q图
以样本的分位数作为横坐标,以按照正态分布计算的相应分位点作为纵坐标,把样本表现为指教坐标系的散点。如果资料服从正态分布,则样本点应该呈一条围绕第一象限对角线的直线。
以上两种方法以Q-Q图为佳,效率较高。 3、直方图
判断方法:是否以钟形分布,同时可以选择输出正态性曲线。 4、箱式图
判断方法:观测离群值和中位数。 5、茎叶图
类似与直方图,但实质不同。 二、计算法
1、偏度系数(Skewness)和峰度系数(Kurtosis) 计算公式:
g1表示偏度,g2表示峰度,通过计算g1和g2及其标准误σg1及σg2然后作U检验。两种检验同时得出U
2、非参数检验方法
非参数检验方法包括Kolmogorov-Smirnov检验(D检验)和Shapiro- Wilk (W 检验)。
SAS中规定:当样本含量n ≤2000时,结果以Shapiro – Wilk(W 检验)为准,当样本含量n >2000 时,结果以Kolmogorov – Smirnov(D 检验)为准。
SPSS中则这样规定:(1)如果指定的是非整数权重,则在加权样本大小位于3和50之间时,计算 Shapiro-Wilk 统计量。对于无权重或整数权重,在加权样本大小位于3 和 5000 之间时,计算该统计量。由此可见,部分SPSS教材里面关于“Shapiro – Wilk适用于样本量3-50之间的数据”的说法是在是理解片面,误人子弟。(2)单样本 Kolmogorov-Smirnov 检验可用于检验变量(例如income)是否为正态分布。
对于此两种检验,如果P值大于0.05,表明资料服从正态分布。 三、SPSS操作示例
SPSS中有很多操作可以进行正态检验,在此只介绍最主要和最全面最方便的操作:
1、工具栏--分析—描述性统计—探索性
2、选择要分析的变量,选入因变量框内,然后点选图表,设置输出茎叶图和直方图,选择输出正态性检验图表,注意显示(Display)要选择双项(Both)。
3、Output结果
(1)Descriptives:描述中有峰度系数和偏度系数,根据上述判断标准,数据不符合正态分布。
Sk=0,Ku=0时,分布呈正态,Sk>0时,分布呈正偏态,Sk<0时,分布呈负偏态,时,Ku>0曲线比较陡峭,Ku<0时曲线比较平坦。由此可判断本数据分布为正偏态(朝左偏),较陡峭。
(2)Tests of Normality:D检验和W 检验均显示数据不服从正态分布,当然在此,数据样本量为1000,应以W检验为准。
(3)直方图
直方图验证了上述检验结果。
(4)此外还有茎叶图、P-P图、Q-Q图、箱式图等输出结果,不再赘述。结果同样验证数据不符合正态分布。
如何在SPSS中做数据正态转化?
在何以建老师培训班上,将数据标准正态化,何老师用的方法是:先将各原始分数按百分位排列,然后按照正态分布的面积(P值即百分位)找对应的Z值,这要转换到EXCEL表格里,用NORMSINV函数[ NORMSINV(p) 返回数值 z 这样概率 p 与一个标准的正常随机变量将采用为小于或等于 z 的值。],然后再导入SPSS表格中,导放可不是件容易的事,因为有重复的分数,帮还要粘贴替代。
一个功能强大的SPSS,难道一个常用的数据正态化按纽也没有? 当然有!
我用的是SPSS18.0,这是个汉化版,将一组数据正态化的按纽分别是:“转换”——“个案排秩”——把要正态化的数据迁入“变量”栏——把要呈现的表格式样迁入“排序标准”——再点右上角“秩的类型”——再点右下角“正态得分”,基本上就差不多了,只是正态化有四个选择项,我用的是Tukey法,这种方法对负偏态比较严重的分数相当好。(何以建老师一个一个尝试过)。
注: 在EXCEL中,函数NORMSINV 和 NORMSDIST 是相关的功能。如果 NORMSDIST(z) 返回 p,然后 NORMSINV(p) 返回 z。 其实,正态化没有那么神秘,如果我们知道了每个一分数在群体中的排名即可求出它的正态Z分,因为知道排位,即可知道它的百分位置,即面积P值。那当然轻而易举地知道Z分了。
数据的标准化、正态化、正态标准化的区别和联系,近期将一个一个描述清楚,到时请你关注我的博客。
现在网上找到一种算法,这个方法比较简单: 严格说来,回答你的问题需要讲四个
What's normal transformation?(什么是正态转换)
Why do we need normal transformation?(为何做正态转换) When is normal transformation needed? (何时做正态转化) How can we do normal transformation?(如何做正态转化) 我担心如果只讲How(如何做),也许有些初学者不分场合,误用滥用。但是,我同样担心如果从ABC讲起,难免过分啰嗦,甚至有藐视大家的智商之嫌。所幸者,我们已经进入Web 2.0年代,有关上述What, Why, When问题的答案网上唾手可得。如果对这些问题不甚了了的读者,强烈建议先到google上用“How to transform data to normal distribution\搜一下(或点击下面的“前10条”),前10条几乎每篇都是必读的经典。' 有了上述交代,我们可以比较放心地来讨论如何做正态转化的问题了。具体来说,涉及以下几步: 第一步,查看原始变量的分布形状及其描述参数(Skewness和Kurtosis)。这可以用Frequencies中的Histogram或Examination中的BoxPlot
第二步,根据变量的分布形状,决定是否做转换。这里,主要是看一下两个问题: !左右是否对称,也就是看Skewness(偏差度)的取值。如果Skewness为0,则是完全对称(但罕见);如果Skewness为正值,则说明该变量的分布为positively skewed(正偏态,见下图1b);如果Skewness为负值,则说明该变量的分布为negatively skewed(负偏态,见图 1a)。然而,肉眼直观检查,往往无法判断偏态的分布是否与对称的正态分布有“显著”差别,所以需要做显著性检验。如同其它统计显著性检验一样,Skewness的绝对值如大于其标准误差的1.96倍,就被认为是与正态分布有显著差别。如果检验结果显著,我们也许(注意这里我用的是“也许”一词)可以通过转换来达到或接近对称。
共分享92篇相关文档