当前位置:首页 > 微积分(二)课后题答案,复旦大学出版社
?z??z??u??z??v?veuv1?2y?ueuv?1?1?y?u?y?v?yx2?y22x2?y21?(yx
x)2x2?y2?arctanyx ?euvln22(yv?xu)?ex?yx2arctany?xlnx2?y2)?y2(xx
3.求下列函数的一阶偏导数,其中f可微: (1) u?f (
xy,yz); (2) z?f(x2?y2); (3) u?f(x, xy, xyz).
解:(1)
?u11?x?f1??y?f2??0?yf1?
?u?y?f1???x?y2?f2??1z?1zf2?xy2f1?
?u?f??0?f?y?z12???y?z2z2f2
(2)令u?x2?y2,则z?f(u)
?z?df??u?f?(u)?2x?2xf?(x2?y2)?xdu?x
?z?df??u?ydu?y?f?(u)?2y?2yf?(x2?y2)
(3)令t?x,v?xy,w?xyz,则u?f(t,v,w).
?u??f?dt??f??v??f??w?ff?x?tdx?v?x?w?x1??1?f2??y?3??yz?f1??yf2??yzf3??u??f?dt?y?tdy??f??v??f??w?v?y?w?y?f1??0?f2??x?f3??xz?xf2??xzf3?
?u??f?dt??f??v??f??w?f?0?f?xy?xyf?z?tdz?v?z?w?z1?2??0?f3?3?
4.设z?xy?x2F(u),u?
y,F(u)可导.证明:
xx?z?y?z?x?y?2z.
证:??z?y?2xF(u)?x2F?(u)??y?y?2xF(u)?yF?(u)?xx2
?z21?y?x?xF?(u)?x?x?xF?(u)
9
?x?z?x?y?z?y?xy?2xF(u)?xyF?(u)?xy?xyF?(u)
2 ?2[xy?xF(u)]?? z5.利用全微分形式不变性求全微分:
(1) z?(x2?y2)sin(2x?y); (2) u?
yf(x?y?z)2222,f可微.
v解:(1)令u?x?y,v?sin(2x?y),则z?u
22dz??z?udu??z?vdv?vuv?1d(x?y)?u?lnudsin(2x?y)
22v
?vuvv?1(2xdx?2ydy)?ulnu?cos(2x?y)d(2x?y)?2(xdx?ydy)?lnu?cos(2x?y)(2dx?dy)]?2sin(2x?y)?22(xdx?ydy)?cos(2x?y)ln(x?y)(2dx?dy)??22x?y???1f22v?u[vu?(x?y)22sin(2x?y)(2)du?1fdy?y?df?1f2dy?yf2f?(x?y?z)d(x?y?z)
222222?1fdy?yf?(x?y?z)f122(2xdx?2ydy?2zdz)222
?f(x?y?z)222dy?2yf?(x?y?z)f(x?y?z)2222
(xdx?ydy?zdz)6.求下列隐函数的导数:
(1) 设ex?y?xyz?ex,求z?x,z?y; (2)设
xzx?ln
zy,求
?z,?z.
?x?y解:(1)设F(x,y,z)?e Fx??e 故zx???x?yx?y?xyz?ex?0,则
?yz?e,Fy??ex?y?xz,Fz??xy
Fx?Fz?e?exx?y?yzxyxzyzzy,zy???FyFz??ex?y?xzxy
(2)设F(x,y,z)??ln?0,则
Fx??
1z,Fy?????zy2?1y,Fz???xz2?yz?1y??xz2?1z
10
1故
?z?x??Fx?Fz????zxz2?1z?zx?z
1
?z?y??Fy?Fz????yxz2?1z?z2y(x?z)
7.设x?z?yf(x2?z2),其中f可微,证明:z?zz?x?y??y?x.
证:设F(x,y,z)?x?z?yf(x2?z2)
则Fxyf?(x2?z2x??1?2)
22
Fy???f(x?z)Fz??1?2yzf?(x2?z2
)22故
?z??Fx??2xyf?(x?z)?1?xFz?1?2yzf?(x2?z2)
?zFy?f(x2?y2
???)?y
Fz?1?2yzf?(x2?z2)2222从而z?zyzf?(x?z)?zyf(x?y)?x?y?z?x?y?1?2yzf?(x2?z2)?1?2yzf?(x2?z2)2222?2xyzf?(x?z)?z?yf(x?y)1?2yzf?(x2?z2)2xyzf?(x2?z2 ?)?z?x?z1?2yzf?(x2?z2)
x[2yzf?(x2?z2?)?1]?x1?2yzf?(x2?z2)8.设x?eucosv, y?eusinv, z?uv,求
?z及
?z.
?x?y解法一:由x?eucosv,y?eusinv得
u?1ln(x2?y2),v?arctany,z?uv2x 故
?z??z?u?x?u?x??z?vxv?yu?v?x?x2?y2?(vcosv?usinv)e?u 11
?z?y??z?u?u?y??z?v?v?yu?yv?xux?y22?(vsinv?ucosv)e?u
??x?ecosv解法二:设方程组?确定了函数u?u(x,y),v?v(x,y),对方程组的两个方程关u??y?esinv于x求偏导得
?u?v?uu1?ecosv?esinv???x?x ??0?eusinv?u?eucosv?v??x?x???u?u?ecosv???x解方程组得?
??v??e?usinv??x?又方程组的两个方程关于y求偏导得
?u?v?uu0?ecosv?esinv??y?y? ??u?vu?1?eusinv?ecosv??y?y?解方程组得:
??u?u?esinv???y ??v?u??ecosv???y从而
?z?x??z?u?z?u??u?x???z?v?v?x??z?v??e?v?y?u(vcosv?usinv)
?z?y??u?ye??u(vsivn?ucovs
)9.设u?f(x,y,z)有连续偏导数,y?y(x)和z?z(x)分别由方程e解:方程exyxy?y?0和e?xz?0确定,求
z
dudx.
?y?0两边对x求导得
exy(y?xdydx)?dydx?0,解得
dydx?yexyxy1?xe?y21?xy
方程e?xz?0两边对x求导得
z 12
共分享92篇相关文档