当前位置:首页 > 江苏省徐州市2018-2019学年高一下学期期中考试数学试题及答案
ππ.?PNE???,PE?4 42PNPE' ?由正弦定理得
sin?PENsin?PNE同理在?PNE中,?PEM?PE?sin?PEN?所以sin?PNE2222??π?cos?...........4分 sin?????2?14......…6分 PM?PN?sin?MPN?22cos??sin?cos?53π5?, 当M与E重合时,??0;当N与D重合时,tan?APD?3,即?APD?,??4443π5? 所以0???44所以?PMN的面积S?综上可得:S?4?3π5?,??0,??……8分 2?cos??sin?cos??44?方法二:在?PME中,?EPM??,PE?AE?AP?4米,?PEM?由正弦定理可知,
π3π??. ,?PME?44MEPE?, sin?sin?PME所以
MEPE?sin??sin?PME4sin?42sin??3π?sin??cos?.........2分 sin?????4?NEPE. ?sin?EPNsin?PNE在?PNE中,由正整定理可知:
π?π???PE?sin????4sin????4?4?22?sin??cos????NE???.............4分 πcos?cos???sin?????2?所以MN?NE?ME?22 2cos??sin?cos?又点P到DE的距离为d?4sin所以?PMN的面积S?π?22, 41122MN?d???22 222cos??sin?cos?4……6分
cos2??sin?cos?当M与E重合时,??0:当N与D重合时,tan?APD?3,即?APD?53π?5 ,??44所以0???3π?5. 44?3π5?,??0,??...……8分 ?cos2??sin?cos??44?综上可得:S?(2)由(1)得S?4
cos2??sin?cos??8?sin2??cos2??18π?....10分 ?2sin?2????14???41?cos2?1?sin2?22?3π5??? 44??又???0,8π?3π5?ππ?8???0,?当2???,即时,S取得最小值为??8?44?2?142答:可视区域?PMN面积的最小值为822.解;(1)
?2?1.…….1分
??2?1平方米................12分
?
连接BD,由余弦定理得
BD2?AB2?AD2?2AB?ADcosA?22?42?2?2?4cosA BD2?BC2?CD2?2BC?CDcosC?42?62?2?4?6cosC
即20?16cosA?52?48cosC....................2分 又四边形ABCD内接于圆O,则又A?C?π
所以20?16cosA?52?48cos?π?A?化简得cosA??所以A?1,又A??0,π? 22ππ,同时有C?...............4分 3312π1π??4?6sin?83.........6分 所以S?S?ABA?S?BCD??2?4sin2323(2)
设四边形ABCD的面积为S,则
11S?S?ABD?S?BCD??AB?AD?sinA??BC?CDsinC
22BD2?AB2?AD2?2AB?ADcosA?BC2?CD2?2BC?CDcosC........8分
11?S??2?4sinA??4?6sinC?22 即??22?42?2?2?4cosA?42?62?2?4?6cosC??S??sinA?3sinC ?2??2?3cosC?cosAS2平方相加得:?4?10?6sinAsinC?6cosAcosC
16S2即?6?6cos?A?C?..................10分 16又A?C??0,2π?
S2当A?C?π时,有最大值,即S有最大值。
16此时,A?π?C,代入2?3cosC?cosA中得cosC?又C??0,π?,可得C?221 2π...............12分 3222在ABCD中BD?BC?CD?2BC?CDcosC?4?6?2?4?6cos所以BD?27...................14分
π?28 3
共分享92篇相关文档