当前位置:首页 > 数学建模大赛一等奖作品
部门提前预防和控制交通事故提供决策依据。
二.问题的分析
2.1(问题一)
本小问主要解决对该省公路交通事故四项指标进行的聚类分析。此小问属于统计问题,因此由附件的相关数据信息,我们首先将附件中高速公路事故24时分布、月统计、辖区统计进行整理,得出四项指标在六年中小时段、月份、辖区分布总量。
本问题主要解决该省高速公路交通事故基于四项指标的时间、空间分布规律。本问题为聚类分析的思想,由题目可以知道对于A省高速公路交通事故分布规律需要分别对四项指标进行聚类分析,找出各个指标内的能够度量不同小时段、不同月份、不同辖区之间的相似度的统计量。并将其聚合到不同类中。 因此,用SPSS的K-means Cluster过程即逐步聚类法,按照预定的分类数量,按照既定的原则选择凝聚点,得到一个初始分类方案,并计算出各个初始分类的中心位置(均值);最后,使用计算出的中心位置重新进行聚类,因此在该方法中,各指标的分类情况会在运算中不断改变,分类完毕后再次计算各类的中心位置。如此反复循环,直到凝聚点位置改变很小为止。 2.2 (问题二)
由对题目的第二问分析,可知第二问分为两小问。
第一小问:选用灰色分析、多元线性回归分析等分析方法构建高速公路交通事故受伤人数预测模型。交通事故作为一个随机事件,其本身具有相当大的偶然性和模糊性 ;具有明显的不确定性特征。因此可以认为一个地区的道路交通安全系统是一个灰色系统,可以应用灰色系统的理论进行研究。用G(1,1)灰色建立受伤人数指标的预测模型,在GM(1,1)模型及相关模型灰色预测过程中要大量进行数列和矩阵运算将MATLAB软件和GM(1,1)结合,实现灰色预测算法;建立多元线性回归模型。
第二小问:本小问为优化问题,就模型精度等级的划分和预测的准确性作进一步的分析,探讨建立组合模型或提高预测准确性的其它解决方案,最后对A省公路交通事故未来五年的发展趋势做出科学预测。
对四项指标分别用灰色分析和多元线性回归模型结果进行精确度比较,并且构建最优组合预测模型。利用以上两种不同的单项预测法对受伤人数指标进行预测,然后对各个单独的预测结果做适当的加权平均,最后取其加权平均值作为最终的预测结果。本文采用简单实用的求方差极小值法,获得组合预测模型。
5
三.模型假设与符号系统
3.1模型假设
(1)假设在受伤人数统计时,以伤残等级三级以上归为受伤。
(2)假设在财产损失统计时,所损失的物资、费用等均按现社会流通价值或社会人力服务成本的平均值进行统计。
(3)根据其同一指标中的个体有较大的相似性,不同类中的个体差异较大,用聚类方法聚合时,将其聚合在3类中。
(4)假设高速路上行驶的车辆状况、驾驶员心理状态良好。
3.2符号系统
Xij表示第i个指标在第j年的给定值;
x(0)(k)实际给定的第k年的死亡人数:其中k=1,2,?6; X(1)的一次累加生成序列;
为X(1)的紧邻均值生成序列待定参数列;
z(1) B为数据矩阵 ?,?为待估参数;
Y为数据向量;
a为待定参数列;
?q?k?为生成残差;
q为残值均值;
s12为原始数据的方差;
2s2为残值的方差;
C为后验差比值;
P为小误差概率; f3为组合模型使用; f2为多元线性回归预测值; f1为灰色理论预测值;
6
?2为多元线性回归预测的预测误差; ?1为灰色理论预测的预测误差;
?2多元线性回归的相应权系数; ?1灰色理论模型的相应权系数; MSPE为均方百分比误差;
四.模型的建立及求解
4.1 问题一
4.1.1建立模型Ⅰ
聚类分析法是根据实物本身的特性来定量研究分析问题的一种统计分析方法。其基本思想是同一类中的个体有较大的相似性,不同类中的个体差异较大,于是更具一批样品的多个观测指标,找出能够度量样品(或变量)之间相似度的统计量,并以此为依据,采用聚类发将所有的样品(或变量)分别聚合到不同的类中。
将分析评价中的n个待评样本作为聚类对象(Xi)(i=1,2,?,n);m个;评价指标作为聚类指标(Uj)(j=1,2,?,m),s个评价标准作为评价等级(Zk)(k=1,2,?,s).则根据第i个聚类独享对于第j个聚类指标的样本值Xij,确定聚类样本矩阵为X :
?X11?X?21 ?X31??X41??X51X12X22X32X42X52X13X23X33X43X53X14X24X34X44X54X15?X25??X35? ?X45?X55??以一年十二个月的数据分析为例:在对给定的原始收据通过Excel整理的基础上我们建立了针对交通事故每月的聚类分析模型。将分析评价中的12个待评样本作为聚类对象(Xi)(i=1,2,?,12);4个;评价指标作为聚类指标(Uj)(j=1,2,3,4),我们设定为三类分类标准,则聚类样本矩阵为:
7
?45?41??40??45?46??49?55??53?51??41??36??414.1.2模型Ⅰ的求解及结果
26411012394?27511130126??2243752580??35501263204?3057977874??32601086974?36581257101??
3761946124?40551052758??2643900581??2736738204?3146767496??在建立了聚类分析的模型的基础上,我们采用了SPSS软件来对模型进行求解,SPSS的优点是计算量较小,从而可以有效的处理多变量、大样本数据而不会占用过多的内存空间和计算时间;同时在分析时用户可以人为地制定初始中心位置,或者将曾做过的聚类分析结果作为初始位置引入分析。通过计算得得出下面的实验数据结果:
表4.1初始聚类中心 聚类 1 2 3 次数 45.00 45.00 36.00 死亡人数 26.00 35.00 27.00 受伤人数 41.00 50.00 36.00 经济损失 1012394.00 1263204.00 738204.00 表4.2最终聚类结果 案例号 1 2 3 4 5 6 7
月份 一月 二月 三月 四月 五月 六月 七月 聚类 距离 1 2867.600 1 114864.429 3 180.068 2 3051.507 1 37387.572 1 71712.429 2 3051.507 8
共分享92篇相关文档