当前位置:首页 > (完整word版)高中数学数列练习题集与解析
数列练习题
一.选择题(共16小题)
1.数列{an}的首项为3,{bn}为等差数列且bn=an+1﹣an(n∈N*),若b3=﹣2,b10=12,则a8=( ) A. 0
B. 3
C. 8
D. 11
2.在数列{an}中,a1=2,an+1=an+ln(1+),则an=( ) A. 2+lnn
B. 2+(n﹣1)lnn
C. 2+nlnn
D. 1+n+lnn
3.已知数列{an}的前n项和Sn=n2﹣9n,第k项满足5<ak<8,则k等于( ) A. 9
B. 8
C. 7
D. 6
4.已知数列{an}的前n项和为Sn,a1=1,Sn=2an+1,则Sn=( ) A. 2n﹣1
B.
C.
D.
5.已知数列{an}满足a1=1,且 A. an=
B. an=
,且n∈N*),则数列{an}的通项公式为( ) C. an=n+2
D. an=(n+2)3n
6.已知数列{an}中,a1=2,an+1﹣2an=0,bn=log2an,那么数列{bn}的前10项和等于( ) A. 130
B. 120
C. 55
D. 50
7.在数列?an?中,若a1?1,an?1?2an?3(n?1),则该数列的通项an?( ) A. n 2?3
B. n?1 2?3
=
+
C.
2n?3
D.
2n?1?3
8.在数列{an}中,若a1=1,a2=, A. an=
B. an=
(n∈N*),则该数列的通项公式为( )
C. an=
D. an=
9.已知数列{an}满足an+1=an﹣an﹣1(n≥2),a1=1,a2=3,记Sn=a1+a2+…+an,则下列结论正确的是( ) A. a100=﹣1,S100=5 C. a100=﹣3,S100=2
10.已知数列{an}中,a1=3,an+1=2an+1,则a3=( ) A. 3
B. 7
C. 15
,若a1=,则a2014=( )
D. 18
B. a=﹣3,S=5
100100D. a100=﹣1,S100=2
11.已知数列{an},满足an+1=
A.
12.已知数列?an?中,a1?B. 2 C. ﹣1 D. 1
1n1n A. 3()?2()
23
511n?1,an?1?an?(),,则an=( ) 632B. 3(1)n?1?2(1)n?1 C. 2(1)n?3(1)n
23231n?11n?1D. 2()?3()
2313.已知数列?an?中,a1?1;数列?bn?中,b1?0。当n?2时,an?( )
14.已知:数列{an}满足a1=16,an+1﹣an=2n,则 A. 8
B. 7
11求an,bn.(2an?1?bn?1),bn?(an?1?2bn?1),
33的最小值为( )
C. 6
D. 5
15.已知数列{an}中,a1=2,nan+1=(n+1)an+2,n∈N+,则a11=( ) A. 36
B. 38
C. 40
D. 42
16.已知数列{an}的前n项和为Sn,a1=1,当n≥2时,an+2Sn﹣1=n,则S2015的值为( ) A. 2015
二.填空题(共8小题) 17.已知无穷数列{an}前n项和
,则数列{an}的各项和为
B. 2013
C. 1008
D. 1007
18.若数列{an}中,a1=3,且an+1=an2(n∈N*),则数列的通项an= . 19.数列{an}满足a1=3,
﹣
=5(n∈N+),则an= .
20.已知数列{an}的前n项和Sn=n2﹣2n+2,则数列的通项an= . 21.已知数列{an}中,
22.已知数列{an}的通项公式an=
,则a16= .
,若它的前n项和为10,则项数n为 .
23.数列{an}满足an+1+(﹣1)nan=2n﹣1,则{an}的前60项和为 . 24.已知数列{an},{bn}满足a1=,an+bn=1,bn+1=三.解答题(共6小题)
25.设数列 {an}的前n项和为Sn,n∈N*.已知a1=1,a2=,a3=,且当a≥2时,4Sn+2+5Sn=8Sn+1+Sn﹣1. (1)求a4的值;(2)证明:{an+1﹣an}为等比数列;
(n∈N*),则b2012= .
(3)求数列{an}的通项公式.
26.数列{an}满足a1=1,a2=2,an+2=2an+1﹣an+2. (Ⅰ)设bn=an+1﹣an,证明{bn}是等差数列; (Ⅱ)求{an}的通项公式.
27.在数列{an}中,a1=1,an+1=(1+)an+(1)设bn=
,求数列{bn}的通项公式;
.
(2)求数列{an}的前n项和Sn.
28.(2015?琼海校级模拟)已知正项数列满足4Sn=(an+1)2. (1)求数列{an}的通项公式; (2)设bn=
29.已知{an}是等差数列,公差为d,首项a1=3,前n项和为Sn.令T20=330.数列{bn}满足bn=2(a﹣2)dn﹣2+2n﹣1,a∈R. (Ⅰ)求数列{an}的通项公式;
(Ⅱ)若bn+1≤bn,n∈N*,求a的取值范围.
,求数列{bn}的前n项和Tn.
,{cn}的前20项和
共分享92篇相关文档