当前位置:首页 > 线性代数章节作业
第一章
13.aa21bb21c; c21bb2
1111
c?a c = 0b?a
c?a c?b 0c20
1
解: a
a2
=(b?a)(c?a)(c?b)
a?b?c2a2a4.2bb?c?a2b;
2c2cc?a?ba?b?c2a2a解: 2bb?c?a2b
2c2cc?a?b111
=(a+b+c) 2bb?c?a2b
2c2cc?a?b111
=(a+b+c) 0?a?b?c 0
00?a?b?c=(a+b+c)*1*(-a-b-c)*(-a-b-c) =(a+b+c)
3
111?1115.
?1?11?1?1?111; 1111
解: ?11
?1?1?1?11= 000
1200
1220
111?111 11
12 22
=1*2*2*2 =8
126. 342341341241 2310解: 10
10101=10 1
111=10 0
00
2341
23413412
341241 23
41 23
23411?3 0?4400?4
=10*1*1*(-4)*(-4) =160
118.11111234361041020
????????????????
解:=
????????????????????= ??????
????????
????????
???? ????
=1*1*1*1 =1
第二章
1.已知A为四阶方阵,且|A|=2,求:(1) |- A|;(2) |2A|;(3) |AAT|; (4)| A2|.
解:(1)|- A|=(?1)4 ?? =2 (2) |2A|=24 ?? =32
(3) |AAT|= ?? ???? = ?? ?? =2×2=4 (4)| A2|= ?? ?? =2×2=4
?21?2.设矩阵A??,E为二阶单位矩阵,矩阵B满足BA=B+E,???12?求|B|
解:∵BA=B+E ∴B(A-1)=E
111011
((A?1),E)→ →
?110102
T
T1
1010
→ 1101
1212
?
12
12
∵ B
T
= 21
2
?
12
12
1112
2
1 2
所以可得:B=
1
112
2
?
B =
2
?
111112
1 =2ⅹ2-(-2)ⅹ2=2 2
3.设A,B均为三阶方阵,且已知|A|=4,|B|=5,求|2AB|. 解: 2AB = 2A B =23 A B =8ⅹ4ⅹ5 =160
?14??20??31?6.已知矩阵A??,矩阵X满足 ,B??,C???????12???11??0?1?AXB=C,求解X.
共分享92篇相关文档