当前位置:首页 > 湖北省十堰市2019年中考数学试卷(含解析)
∴∠ADC=90°, ∴AD⊥BC, ∵AB=AC,
∴∠CAD=∠BAD=∠BAC, ∵∠CDE=∠BAC. ∴∠CDE=∠CAD, ∵OA=OD, ∴∠CAD=∠ADO, ∵∠ADO+∠ODC=90°, ∴∠ODC+∠CDE=90° ∴∠ODE=90° 又∵OD是⊙O的半径 ∴DE是⊙O的切线;
(2)解:∵AB=AC,AD⊥BC, ∴BD=CD, ∵AB=3BD, ∴AC=3DC,
设DC=x,则AC=3x, ∴AD=
=2
x,
∵∠CDE=∠CAD,∠DEC=∠AED, ∴△CDE∽△DAE, ∴∴DE=4
=
,即
,
=
=
,x=
∴AC=3x=14, ∴⊙O的半径为7.
13 第页(共20页)
【点评】本题考查了圆的切线的判定定理、圆周角定理、等腰三角形的性质、三角形相似的判定和性质,解题的关键是作出辅助线构造直角三角形或等腰三角形.
23.(10分)某超市拟于中秋节前50天里销售某品牌月饼,其进价为18元/kg.设第x天的销售价格为y(元/kg),销售量为m(kg).该超市根据以往的销售经验得出以下的销售规律:①当1≤x≤30时,y=40;当31≤x≤50时,y与x满足一次函数关系,且当x=36时,y=37;x=44时,y=33.②m与x的关系为m=5x+50. (1)当31≤x≤50时,y与x的关系式为
;
(2)x为多少时,当天的销售利润W(元)最大?最大利润为多少?
(3)若超市希望第31天到第35天的日销售利润W(元)随x的增大而增大,则需要在当天销售价格的基础上涨a元/kg,求a的最小值. 【分析】本题是通过构建函数模型解答销售利润的问题.
(1)依据题意利用待定系数法,易得出当31≤x≤50时,y与x的关系式为:y=
x+55,
(2)根据销售利润=销售量×(售价﹣进价),列出每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式,再依据函数的增减性求得最大利润.
(3)要使第31天到第35天的日销售利润W(元)随x的增大而增大,则对称轴=≥35,求得a即可 【解答】解:
(1)依题意,当x=36时,y=37;x=44时,y=33, 当31≤x≤50时,设y=kx+b, 则有
,解得
∴y与x的关系式为:y=x+55
14 第页(共20页)
(2)依题意, ∵W=(y﹣18)?m ∴
整理得,当1≤x≤30时, ∵W随x增大而增大
∴x=30时,取最大值W=30×110+1100=4400 当31≤x≤50时,
W=
∵
x+160x+1850=
<0
2
∴x=32时,W取得最大值,此时W=4410
综上所述,x为32时,当天的销售利润W(元)最大,最大利润为4410元 (3)依题意,
W=(y+a﹣18)?m=
∵第31天到第35天的日销售利润W(元)随x的增大而增大 ∴对称轴x=
=
≥35,得a≥3
故a的最小值为3.
【点评】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.其中要注意应该在自变量的取值范围内求最大值(或最小值). 24.(10分)如图1,△ABC中,CA=CB,∠ACB=α,D为△ABC内一点,将△CAD绕点C按逆时针方向旋转角α得到△CBE,点A,D的对应点分别为点B,E,且A,D,E三点在同一直线上. (1)填空:∠CDE=
(用含α的代数式表示);
(2)如图2,若α=60°,请补全图形,再过点C作CF⊥AE于点F,然后探究线段CF,
15 第页(共20页)
AE,BE之间的数量关系,并证明你的结论;
(3)若α=90°,AC=5距离.
,且点G满足∠AGB=90°,BG=6,直接写出点C到AG的
【分析】(1)由旋转的性质可得CD=CE,∠DCE=α,即可求解;
(2)由旋转的性质可得AD=BE,CD=CE,∠DCE=60°,可证△CDE是等边三角形,由等边三角形的性质可得DF=EF=
,即可求解;
(3)分点G在AB的上方和AB的下方两种情况讨论,利用勾股定理可求解. 【解答】解:(1)∵将△CAD绕点C按逆时针方向旋转角α得到△CBE ∴△ACD≌△BCE,∠DCE=α ∴CD=CE ∴∠CDE=故答案为:(2)AE=BE+
CF
理由如下:如图,
∵将△CAD绕点C按逆时针方向旋转角60°得到△CBE ∴△ACD≌△BCE
∴AD=BE,CD=CE,∠DCE=60° ∴△CDE是等边三角形,且CF⊥DE ∴DF=EF=
16 第页(共20页)
共分享92篇相关文档