当前位置:首页 > SPSS因子分析法--比较的好
计算主成分载荷,构建载荷矩阵A。载荷矩阵A中某一行表示原有变量 Xi与公共因子/因子变量的相关关系。载荷矩阵A中某一列表示某一个公共因子/因子变量能够解释的原有变量 Xi的信息量。有时因子载荷矩阵的解释性不太好,通常需要进行因子旋转,使原有因子变量更具有可解释性。因子旋转的主要方法:正交旋转、斜交旋转。
?a11?a21?A=?...??ap1?a12a21...ap1............a1m??l11?1??a2m???l21?1...??...??apm????lp1?1l12l21?2?2...............l1ml2m?m??m?...???m???
正交旋转和斜交旋转是因子旋转的两类方法。前者由于保持了坐标轴的正交性,因此使用最多。正交旋转的方法很多,其中以方差最大化法最为常用。
方差最大正交旋转(varimax orthogonal rotation)——基本思想:使公共因子的相对负荷的方差之和最大,且保持原公共因子的正交性和公共方差总和不变。可使每个因子上的具有最大载荷的变量数最小,因此可以简化对因子的解释。
斜交旋转(oblique rotation)——因子斜交旋转后,各因子负荷发生了变化,出现了两极分化。各因子间不再相互独立,而是彼此相关。各因子对各变量的贡献的总和也发生了改变。
斜交旋转因为因子间的相关性而不受欢迎。但如果总体中各因子间存在明显的相关关系则应该考虑斜交旋转。适用于大数据集的因子分析。
无论是正交旋转还是斜交旋转,因子旋转的目的:是使因子负荷两极分化,要么接近于0,要么接近于1。从而使原有因子变量更具有可解释性。
lp1?2lpm5.4 计算因子变量得分
因子变量确定以后,对于每一个样本数据,我们希望得到它们在不同因子上的具体数据值,即因子得分。估计因子得分的方法主要有:回归法、Bartlette法等。计算因子得分应首先将因子变量表示为原始变量的线性组合。即:
?z1?l11x1?l12x2???l1pxp??z2?l21x1?l22x2???l2pxp????z?lx?lx???lxm11m22mpp?m
回归法,即Thomson法:得分是由贝叶斯Bayes思想导出的,得到的因子得分是有偏的,但计算结果误差较小。贝叶斯(BAYES)判别思想是根据先验概率求出后验概率,并依据后验概率分布作出统计推断。
Bartlett法:Bartlett因子得分是极大似然估计,也是加权最小二乘回归,得到的因子得分是无偏的,但计算结果误差较大。
因子得分可用于模型诊断,也可用作进一步分析如聚类分析、回归分析等的原始资料。关于因子得分的进一步应用将在案例介绍一节分析。
5.5 结果的分析解释
此部分详细见案例分析
二、案例分析
1 研究问题
石家庄18个县市14个指标因子,具体来说有人均GDP(元/人)、人均全社会固定资产投资额、人均城镇固定资产投资额、人均一般预算性财政收入、第三产业占GDP比重(%)、人均社会消费品零售额、人均实际利用外资额(万美元/人)、人均城乡居民储蓄存款、农民人均纯收入、在岗职工平均工资、人才密度指数、科技支出占财政支出比重(%)、每万人拥有执业医师数量、每千人拥有病床数。
要求根据这14项内容进行因子分析,得到维度较少的几个因子。
2 实现步骤
【1】在“Analyze”菜单“Data Reduction”中选择“Factor”命令,如下图所示。
【2】在弹出的下图所示的Factor Analysis对话框中,从对话框左侧的变量列表中选择这14个变量,使之添加到Variables框中。
【3】点击“Descriptives”按钮,弹出“Factor Analysis:Descriptives”对话框,如图所示。
Statistics框用于选择哪些相关的统计量,其中:
Univariate descriptives(变量描述):输出变量均值、标准差; Initial solution (初始结果)
Correlation Matrix框中提供了几种检验变量是否适合做引子分析的检验方法,其中:
Coefficients (相关系数矩阵) Significance leves (显著性水平)
Determinant (相关系数矩阵的行列式) Inverse (相关系数矩阵的逆矩阵)
Reproduced (再生相关矩阵,原始相关与再生相关的差值) Anti-image (反影像相关矩阵检验)
KMO and Bartlett’s test of sphericity (KMO检验和巴特利特球形检验) 本例中,选中该对话框中所有选项,单击Continue按钮返回Factor Analysis对话框。
【4】单击“Extraction”按钮,弹出“Factor Analysis:Extraction”对话框,选择因子提取方法,如下图所示:
共分享92篇相关文档