当前位置:首页 > 数学苏教版八年级上第三章《中心对称图形》小结与思考教案
第三章 中心对称图形(小结与思考)
一、课标要求:
1、 通过旋转的具体实例,理解对应点到旋转中心的距离相等,对应点与旋转中心连线所成
的角也彼此相等;
2、 欣赏旋转在现实生活中的应用,能按要求画出简单平面图形,能探索出图形之间的变换
关系,较灵活运用轴对称、平移和旋转的组合进行图案设计; 3、 梳理出平行四边形与特殊平行四边形之间的关系; 二、教学目标:
1、 回顾、思考本章所学的知识及思想方法,并能用自己喜欢的方式进行梳理,使所学知识
系统化;
2、 进一步丰富对平面图形相关知识的认识,能有条理的、清晰地阐述自己的观点; 3、 通过“小结与思考”的教学,培养学生归纳、反思的意识;
三、教学重点:本章复习教学的重点是:以学生活动为主,让学生在反思与交流的过程中回顾本章知识,梳理所学内容,体会数学思想方法;
四、教学难点:本章的知识内容较多,如何引导学生用自己喜欢的方式梳理本章的知识,使所学内容系统化;
五、思路设计:本节教学应以中心对称为主线,利用中心对称的性质,研究图形旋转的性质,中心对称与中心对称图形的性质;利用中心对称的性质,研究平行四边形及特殊平行四边形 ――矩形、菱形、正方形及三角形中位线和梯形中位线的性质; 六、教学过程:
(一)、回顾、梳理本章所学内容:
1、旋转 ———图形的旋转————绕着某点旋转180°———中心对称、中心对称图形;
Zxxk
【设计说明:(1)复习由一般旋转到图形的旋转,进一步理解旋转前后的图形全等,对应点到旋转中心的距离相等;(2)由转动任意角度到转动180°的情形,培养学生由一般到特殊的辨证观;(3)通过旋转使学生进一步明确中心对称及中心对称图形的有关概念和性质】 2、已知:△ABC和一点O,画△ABC关于点O成中心对称的三角形; (1)点O在△ABC外;(2)点O与△ABC的一个顶点重合 (3)点O是△ABC的一边 BC的中点
【设计说明:(1)进一步巩固中心对称的概念;(2)通过本题,使学生进一步掌握画一个图形关于某点成中心对称的画法——关键是找对称点;(3)从一般到特殊画对称三角形;(4)通过画对称三角形,使学生进一步理解平行四边形是中心对称图形,对理解平行四边形的性质也有所帮助】
3、中心对称图形有:线段、平行四边形、(矩形、菱形、正方形等)圆等;
【设计说明:(1)通过在已学过的图形中寻找中心对称图形,使学生进一步明确中心对称图形的特点;(2)认识平行四边形从一般到特殊的规律——条件越来越多,而范围却越来越小;(3)应以学生讨论为主,让学生自己去体会】
二、
回顾、思考本章所学内容所渗透的数学思想方法:
ZXXK]1、 四边形——平行四边形——矩形——菱形——正方形之间的关系:(1) 范围及关系 直角等腰梯形
四边形 梯形 正 方 形 平行四边形 梯形 矩形 菱形 (2) 四边形的分类:
学。科。
一般四边形
一般平行四边形 矩形
四边形 平行四边形 正方形
菱形 一般梯形
梯形 直角梯形
等腰梯形
【设计说明:这部分内容渗透了从一般到特殊的关系,在图形不断的特殊化的过程中,图形的性质越来越多,判定它的要求也越来越高,要掌握在这种特殊化的过程中图形的变化与相互之间的联系,就必须善于分析、转化。所以,对于这部分内容,要让学生逐步理解每一类图形的条件、性质及它们的共性与个性,这样才能将这类知识串起来,达到熟练掌握的程度。】
2、 三角形、梯形中位线的性质:
【设计说明:三角形、梯形中位线性质的探索过程,渗透了转化的思想方法,三角形中位线的研究转化为平行四边形的研究,梯形中为线的研究转化为三角形的中位线的研究;通过复习,既巩固了所学内容又进一步培养了学生的转化思想;】 3、中点四边形:
(1) 探讨:顺次连接任意四边形、平行四边形各边中点所得的四边形是 ————平
行四边形;
(2) 探讨:顺次连接矩形、等腰梯形及对角线相等的四边形各边中点所得的四边形
是 ———— 菱形;
(3) 探讨:顺次连接菱形、对角线互相垂直的四边形各边中点所得的四边形是 ——
—— 矩形;
(4) 探讨:顺次连接正方形各边中点所得的四边形是 ———— 正方形; 【设计说明:通过中点四边形的探讨与研究,(1)进一步培养了学生“操作、观察 —— 猜想 —— 探索——— 说理”的能力;(2)进一步巩固了各类四边形的性质与判定;】
1、 作业:
教后感
课题:第三章中心对称图形 (小结与思考)
(第2课时)
一、课标要求:、在探索平行四边形、矩形、菱形、正方形的性质和判定四边形是特殊四边形的过程中,鼓励学生探究方式和表述方式的多样化,为学生提供个性化学习的时间和空间。 二、教学目标:通过具体习题的辅导,帮助学生进一步熟悉、巩固所学的知识、技能和方法,加深对相关知识、方法的理解和应用; 三、教学重点:本章知识的巩固与应用; 四、教学难点:灵活应用本章所学知识
五、思路设计:本节教学以具体问题为载体,面向全体学生,使他们对具体问题的分析思考及表述,进一步巩固所学内容,使每个学生都有不同程度的收获; 六、教学过程:
例1:如图:△ABC和△ADE都是顶点为45°的等腰三角形,BC、DE分别是两个三角形的底边。图中的△ACE可以看成是哪个三角形通过怎样的旋转得到的?P137 4 A
【本题比较能体现旋转的内涵(旋转前后的图形全等;对应点到旋转中心的距离相等;每一对对应点与旋转中心的连线所成的角彼此相等)及等腰三角形的两腰相等的性质,使学生对旋转的性质及应用有更进一步的认识】
例2:如图:ABCD的对角线相交于点O,过点O的直线分别与AD、BC相交于点E、F图中关于点O成中心对称的三角形、四边形有多少对?请将它们分别表示出来。P137 5、
B D C E
共分享92篇相关文档