当前位置:首页 > 上海市金山中学2016-2017学年高二下学期期末考试数学试卷
20.(本题满分16分)本题共有3个小题,第1小题满分5分,第2小题满分5分,第3小题满分6分. 阅读:
已知a,b??0,???,a?b?1,求y?1a?2b的最小值. 解法如下:y?12?12?ba?b???a?b???a?b??a?2ab?3?3?22, 当且仅当b2aa?b,即a?2?1,b?2?2时取到等号, 则y?1a?2b的最小值为3?22. 应用上述解法,求解下列问题: (1)已知a,b,c??0,???,a?b?c?1,求y?1a?1b?1c的最小值; (2)已知x????0,1?2??,求函数y?1x?81?2x的最小值;
(3)已知正数a1,a2,a3,L,an,a1?a2?a3?L?an?1,
a2222求证:S?1a?a2?a3?L?an?1.
1?a2a2?a3a3?a4an?a12解(1)y?1a?1b?1c???1?a?1b?1?c???a?b?c??3???bacacb??a?b?a?c?b?c??, 而ba?ab?ca?ac?cb?bc?6,当且仅当a?b?c?13时取到等号,则y?9, 即y?1a?1b?1c的最小值为9. (2)y?22x?81?2x???2?2x?8?1?2x????2x?1?2x??10?2?1?2x2x?8?2x1?2x, 而x???1??0,2??,2?1?2x2x?8?2x1?2x?216?8, 当且仅当2?1?2x2x2x?8?1?2x,即x?16???1??0,2??时取到等号,则y?18, 所以函数y?18x?1?2x的最小值为18. )2S???a222(31a2an??a??L?????a1?a2???a2?a3??L??an?1?a2aa1???
2?a3an?a1??a2222??a2?a2?L?a21a2ana?12n????a??a12?a3??1?a2aa??a1?a2??L??a??a1?a2????an?a1??2?3an1a1?a2???a2221?a2?L?an???2a1a2?2a2a3?L?2ana1???a1?a2?L?a2n??1
当且仅当a11?a2?L?an时取到等号,则S?1n?2. 21.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.
设椭圆E1的长半轴长为a1、短半轴长为b1,椭圆E2的长半轴长为a2、短半轴长为b2,若
a1b1a?b,22则我们称椭圆Ex21与椭圆E2是相似椭圆.已知椭圆E:2?y2?1,其左顶点为A、右顶点为B. (1)设椭圆E与椭圆F:x2s?y22?1是“相似椭圆”,求常数s的值; (2)设椭圆G:x22?y2???0???1?,过A作斜率为k1的直线l1与椭圆G仅有一个公共点,过椭圆E的上顶点为D作斜率为k2的直线l2与椭圆G仅有一个公共点,当?为何值时k1?k2取得最小值,并求其最小值;
(3)已知椭圆E与椭圆H:x2y22?t?1?t?2?是相似椭圆.椭圆H上异于A,B的任意一点C?x0,y0?,求证:?ABC的垂心M在椭圆E上.
解:(1)显然椭圆E的方程为x2?y22?1, 由椭圆E与F相似易得:
当s?2时,21s?2?s?4;
当0?s?2时,212?s?s?1.
则s?4或1; (2)易得A??2,0,D?0,1?,
?
可得l1,l2的方程分别为y?k1x??y?k1x??依题意联立:?x22??y???2??2?2,y?k2x?1,
?
22?1?2k1x2?42k1x?4k1?2??0,
4?2?又直线l1与椭圆G相切,则?1?0(又0???1),即32k1?41?2k1即k1??2??4k21?2??0,
?1?21???y?k2x?1?22?1?2kx?4k2x?2?2??0, 依题意再联立:?x222??y???222又直线l2与椭圆G相切,则?2?0(又0???1),即16k2?41?2k2?2?2???0,
,
????即k2?111??,故k1k2?,
2?2即k1?k2?2k1k2?所以当??2,当且仅当k1?k2时取到等号,此时??1, 21时,k1?k2取得最小值2. 2x2t2?y2?1,由?,可得t?4, (3)证明:显然椭圆E:221x2y2??1. 即有椭圆H:2422x0y0??1① 由椭圆H上的任意一点C?x0,y0?,于是24设?ABC的垂心M的坐标为?xM,yM?,
y0yM由CM?AB得xM?x0,又AM?BC????1,
xM?2x0?2y0yM2将xM?x0代入???1,得x0?2?y0yM②
xM?2x0?2由①②得y0?2yM.
又xM
x2?x0代入(1)得M?yM?1,即?ABC的垂心M在椭圆E上.
22
共分享92篇相关文档