当前位置:首页 > 2020人教版九年级数学下册28.2 解直角三角形及其应用同步练习题解析版
2020人教版九年级数学下册28.2 解直角三角形及其应用同步练
习题
一.选择题(共12小题)
1.如图,有一斜坡AB,坡顶B离地面的高度BC为30m,斜坡的倾斜角是∠BAC,若tan∠BAC=,则此斜坡的水平距离AC为( )
A.75m
B.50m
C.30m
D.12m
2.如图,一把梯子靠在垂直水平地面的墙上,梯子AB的长是3米.若梯子与地面的夹角为α,则梯子顶端到地面的距离BC为( )
A.3sinα米
B.3cosα米
C.
米
D.
米
3.某数学社团开展实践性研究,在大明湖南门A测得历下亭C在北偏东37°方向,继续向北走105m后到达游船码头B,测得历下亭C在游船码头B的北偏东53°方向.请计算一下南门A与历下亭C之间的距离约为( )(参考数据:tan37°≈,tan53°≈)
A.225m
B.275m
C.300m
D.315m
4.如图,在四边形ABCD中,∠DAB=90°,AD∥BC,BC=AD,AC与BD交于点E,AC⊥BD,则tan∠BAC的值是( )
A.
B.
C.
D.
5.如图,甲乙两楼相距30米,乙楼高度为36米,自甲楼顶A 处看乙楼楼顶B处仰角为30°,则甲楼高度为( )
A.11米
B.(36﹣15
)米
C.15
米
D.(36﹣10
)米
6.如图,在△ABC中,∠C=90°,AC=12,AB的垂直平分线EF交AC于点D,连接BD,若cos∠BDC=,则BC的长是( )
A.10
B.8
C.4
D.2
7.如图,在5×4的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在这些小正方形的顶点上,则sin∠BAC的值为( )
A.
B.
C.
D.
8.小菁同学在数学实践活动课中测量路灯的高度.如图,已知她的目高AB为1.5米,她先
站在A处看路灯顶端O的仰角为35°,再往前走3米站在C处,看路灯顶端O的仰角为65°,则路灯顶端O到地面的距离约为(已知sin35°≈0.6,cos35°≈0.8,tan35°≈0.7,sin65°≈0.9,cos65°≈0.4,tan65°≈2.1)( )
A.3.2米
B.3.9米
C.4.7米
D.5.4米
9.如图,一艘轮船从位于灯塔C的北偏东60°方向,距离灯塔60nmile的小岛A出发,沿正南方向航行一段时间后,到达位于灯塔C的南偏东45°方向上的B处,这时轮船B与小岛A的距离是( )
A.30
nmile
B.60nmile D.(30+30
)nmile
C.120nmile
10.某简易房示意图如图所示,它是一个轴对称图形,则坡屋顶上弦杆AB的长为( )
A.
米
B.
米
C.
米
D.
米
11.如图,在△ABC中,CA=CB=4,cosC=,则sinB的值为( )
A.
B.
C.
D.
12.如图,AB是垂直于水平面的建筑物.为测量AB的高度,小红从建筑物底端B点出发,沿水平方向行走了52米到达点C,然后沿斜坡CD前进,到达坡顶D点处,DC=BC.在点D处放置测角仪,测角仪支架DE高度为0.8米,在E点处测得建筑物顶端A点的仰角∠AEF为27°(点A,B,C,D,E在同一平面内).斜坡CD的坡度(或坡比)i=1:2.4,那么建筑物AB的高度约为( )
(参考数据sin27°≈0.45,cos27°≈0.89,tan27°≈0.51)
A.65.8米
B.71.8米
C.73.8米
D.119.8米
二.填空题(共7小题)
13.如图是矗立在高速公路边水平地面上的交通警示牌,经过测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,则CD的长为 米.(结果保留根号)
14.如图,河的两岸a,b互相平行,点A,B,C是河岸b上的三点,点P是河岸a上的一个建筑物,某人在河岸b上的A处测得∠PAB=30°,在B处测得∠PBC=75°,若AB=80米,则河两岸之间的距离约为 米.(
≈1.73,结果精确到0.1米)
共分享92篇相关文档