当前位置:首页 > 高考数学复习 名师原创理科数学专题卷:专题十三《圆锥曲线与方程》
由题意可设直线AB:x?my?1?m?0?,代入y?4x,得y?4my?4?0,
222?y12??y2?,y1?,B?,y2?,则y1?y2?4m,y1y2??4; 设A??4??4?又H?1,2?,设直线AH,BH的斜率分别为k1,k2, 则k1?y1?2y2?244?,k??, 222y1y2y1?2y2?2?1?144设M??1,yM?,N??1,yN?, 令x??1,得yM?2?2?y1?2?8, ?y1?2y1?22?y2?2?8同理,得yN?2?, ?y2?2y2?2从而
yMyN?y1y2?2?y1?y2??4?2?y1?2?2?y2?2?4???4??4?2?4m?4???4; ·??y1?2y2?2y1y2?2?y1?y2??4?4?2?4m?4?8??8?yM?yN??2????2??
y?2y?212?????11??4?8???
?y1?2y2?2??4?y1y2?2?y1?y2??48???y1?y2??4??
?4?8?4m?4??4?2?4m?4
A
17
??4m.
又以MN为直径的圆的方程为: ?x?1?2??y?yM??y?yN??0, 即y2??y2M?yN?y?yM·yN??x?1??0,即x2?2x?3?y2?4my?0,令{y?0x2?2x?3?y2?0,解得x??3或x?1,
从而以MN为直径的圆恒过定点??3,0?和?1,0?.
18
共分享92篇相关文档