当前位置:首页 > 人教版小学四年级数学第6讲:数列(学生版)
第6讲 数列
1、数列:按一定顺序排成的一列数叫做数列。数列中的每一个数都叫做项,第一项称 为首项,最后一项称为末项。数列中共有的项的个数叫做项数。
2、等差数列与公差:一个数列,从第二项起,每一项与与它前一项的差都相等,这 样的数列的叫做等差数列,其中相邻两项的差叫做公差。
3、常用公式
等差数列的总和=(首项+末项)?项数?2 项数=(末项-首项)?公差+1 末项=首项+公差?(项数-1) 首项=末项-公差?(项数-1)
公差=(末项-首项)?(项数-1)
等差数列(奇数个数)的总和=中间项?项数
1、重点是对数列常用公式的理解掌握
2、难点是对题目的把握以及对公式的灵活运用
例1、在数列3、6、9……,201中,共有多少数?如果继续写下去,第201个数是多少?
例2、全部三位数的和是多少?
例3、求自然数中被10除余1的所有两位数的和。 例4、求下列方阵中所有各数的和:
1、2、3、4、……49、50; 2、3、4、5、……50、51; 3、4、5、6、……51、52; ……
49、50、51、52、……97、98;
50、51、52、53、……98、99。
例5、班级男生进行扳手腕比赛,每个参赛男生都要和其他参赛选手扳一次。若一共扳了105次,那么共有多少男生参加了这项比赛?
例6、若干人围成16圈,一圈套一圈,从外向内圈人数依次少6人,如果共有912人,问最外圈有多少人?最内圈有多少人?
A
1、有一串数,已知第一个数是6,而后面的每一个数都比它前面的数大4,这串数中第2003个数是。
2、等差数列0、3、6、9、12、……、45是这个数列的第项。 从2开始的连续100个偶数的和是。
3、一个剧院共有25排座位,从第一排起,以后每排都比前一排多2个座位,第25排有70个座位,这个剧院共有个座位。
4、一个五层书架共放了600本书,已知下面一层都比上面一层多10本书。最上面一层 放本书,最下面一层放本书。 5、除以4余1的三位数的和是。
B
6、在等差数列中4、10、16、22、……中,第48项是多少?508是这个数列的第几项?
7、求从1到2000的自然数中,所有偶数之和与所有奇数之和的差。
8、求不超过500的所有被11整除的自然数的和。
C
9、求下列方阵中100个数的和。
0、1、2、3、……8、9;
1、2、3、4、……9、10; 2、3、4、5、……10、11; ……
9、10、11、12、……17、18。
10、从1到50这50个连续自然数中,取两数相加,使其和大于50,有多少种不同的取法?
11、若干人围成8圈,一圈套一圈,从外向内各圈人数依次少4人,如果共有304人,最外圈有几人?
12、有10只金子,54个乒乓球,能不能把54个乒乓球放进盒子中去,使各盒子的乒乓球数不相等?
13、小明家住在一条胡同里,胡同里的门牌号从1号开始摸着排下去。小明将全胡同的门牌号数进行口算求和,结果误把1看成10,得到错误的结果为114,那么实际上全胡同有多少家?
14、有一堆粗细均匀的圆木,堆成如下图的形状,最上面一层有7根园木,每面下层增加1根,最下面一层有95根,问:这堆圆木一共有多少根?
15、有一个六边形点阵,如下图,它的中心是一个点,算做第一层,第二层每边有两个点,第三层每边有三个点……这个六边形点阵共100层,问,这个点阵共有多少个点?
16、X+Y+Z=1993有多少组正整数解?
1、文丽学英语单词,第一天学会了3个,以后每天都比前一天多学会1个,最后一天学会了21个。文丽在这些天中共学会了多少个英语单词?
2、李师傅做一批零件,第一天做了25 个,以后每天都比前一天多做2个,第20天做了63个正好做完。这批零件共有多少个?
3、小李读一本短篇小说,她第一天读了20页这个等差数列共有多少项?
4、建筑工地上堆着一些钢管(如图所示),求这堆钢管一共有多少根。
5、一些同样粗细的圆木,像如图所示一样均匀地堆放在一起,已知最下面一层有70根。一共有多少根圆木?
(不用添加内容,也不做修改)
共分享92篇相关文档