云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 点线面的关系—教师版

点线面的关系—教师版

  • 62 次阅读
  • 3 次下载
  • 2025/12/10 14:27:32

启智明德,优享未来!

在Rt△BC′D中,C′G=

BC'?C'D33. ?BD2=

∴OG=

C?G2?C?2C'O3?22, .∴tan∠C′GO=

OG2即二面角C′BDA的正切值为2

2.

例16 如图15,三棱柱ABC—A1B1C1中,∠BAC=90°,AB=BB1=1,直线B1C与平面ABC成30°角,求二面角BB1CA的正弦值.

图15

解:由直三棱柱性质得平面ABC⊥平面BCC1B1,过A作AN⊥平面BCC1B1,垂足为N,则AN⊥平面BCC1B1(AN即为我们要找的垂线),在平面BCB1内过N作NQ⊥棱B1C,垂足为Q,连接QA,则∠NQA即为二面角的平面角. ∵AB1在平面ABC内的射影为AB,CA⊥AB, ∴CA⊥B1A.AB=BB1=1,得AB1=

2.∵直线B1C与平面ABC成30°角,∴∠B1CB=30°,B1C=2. 2.∴AQ=1.

63.sin∠AQN=

在Rt△B1AC中,由勾股定理,得AC=

在Rt△BAC中,AB=1,AC= 练习:

2,得AN=

AN6=AQ3,即二面角BB1CA的正弦值为

63.

如图16,边长为2的等边△PCD所在的平面垂直于矩形ABCD所在的平面,BC=2(1)证明:AM⊥PM; (2)求二面角PAMD的大小.

2,M为BC的中点.

图16 图17

(1)证明:如图17,取CD的中点E,连接PE、EM、EA, ∵△PCD为正三角形,∴PE⊥CD,PE=PDsin∠PDE=2sin60°=

3.∵平面

PCD⊥平面ABCD,∴PE⊥平面ABCD.∵四边形ABCD是矩

形,∴△ADE、△ECM、△ABM均为直角三角形.由勾股定理可求得EM=

3,AM=6,AE=3,

∴EM2+AM2=AE2.∴AM⊥EM.又EM是PM在平面ABCD上的射影,∴∠AME=90°.∴AM⊥PM.

启智明德,优享未来!

(2)解:由(1)可知EM⊥AM,PM⊥AM,

∴∠PME是二面角PAMD的平面角.∴tan∠PME=∴二面角PAMD为45°.

PE3=1.∴∠PME=45°. ?EM3

搜索更多关于: 点线面的关系—教师版 的文档
  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

启智明德,优享未来! 在Rt△BC′D中,C′G=BC'?C'D33. ?BD2=∴OG=C?G2?C?2C'O3?22, .∴tan∠C′GO=OG2即二面角C′BDA的正切值为2 2. 例16 如图15,三棱柱ABC—A1B1C1中,∠BAC=90°,AB=BB1=1,直线B1C与平面ABC成30°角,求二面角BB1CA的正弦值. 图15 解:由直三棱柱性质得平面ABC⊥平面BCC1B1,过A作AN⊥平面BCC1B1,垂足为N,则AN⊥平面BCC1B1(AN即为我们要找的垂线),在平面BCB1内过N作NQ⊥棱B1C,垂足为Q,连接QA,则∠NQA即为二面角的平面角. ∵AB1在平面ABC内的射影为AB,CA⊥AB, ∴CA⊥B1A.AB=

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com