当前位置:首页 > 余弦定理的八种证明方法
余弦定理的八种证明方法
研究背景: 2011年高考数学卷(陕西卷)考出了“说明并证明余弦定理”这个考题,使平时不注重翻阅课本的同学大部分吃了亏,虽然这是书本上的知识,且课本上只给出了一种证明方法,但仍让同学们很难想到会考这个证明题,因此我们利用这次研究性学习活动,以论文的方式来介绍一下多种余弦定理的证明方法,来增强我们对课本知识的理解。
目的意义: 用多种方法证明余弦定理,扩展思维,了解更多的过程。 内容摘要: 余弦定理是揭示三角形边角关系的重要定理,直接运用它可解决一类已知三角形两边及夹角求第三边或者是已知三个边求角的问题,若对余弦定理加以变形便可适当移于其它知识。
成果展示: 一余弦定理的内容
对于任意三角形,任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的两倍积,若三边为a,b,c 三角为A,B,C ,则满足性质
a2 = b2 + c2- 2·b·c·cosA b2 = a2 + c2 - 2·a·c·cosB c2 = a2 + b2 - 2·a·b·cosC 二证明方法 方法一:平面几何法
∵如图,有a+b=c ∴c·c=(a+b)·(a+b)
∴c2=a·a+2a·b+b·b ∴c2=a2+b2+2|a||b|cos(π-θ) 又∵Cos(π-θ)=-Cosθ ∴c2=a2+b2-2|a||b|cosθ 再拆开,得c^2=a2+b2-2*a*b*cosC
方法二:勾股法 在任意△ABC中 做AD⊥BC.
∠C所对的边为c,∠B所对的边为b,∠A所对的边为a 则有BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c 根据勾股定理可得: AC2=AD2+DC2
b2=(sinB*c)2+(a-cosB*c)2
b2=(sinB*c)2+a2-2ac*cosB+(cosB)2*c2 b2=(sinB2+cosB2)*c2-2ac*cosB+a2 b2=c2+a2-2ac*cosB
方法三:解析法
在三角形ABC建立直角坐标系,使A点为原点,B点落在x轴正半轴上, 设三角形三边abc
则有三点坐标为A(0,0)B(c,0)C(bcosA,bsinA) ∵BC=a
则由距离公式得a=(c-bcosA)2-(bsinA)2化简得a=c2+b2-2bccosA∴a2=c2+b2-2bccosA
方法四:面积法
S△ACQ=(1/2)bc(cos∠BAC), S△PBC=(1/2)ac(cos∠CBA),
bc(cos∠BAC)+ac(cos∠CBA)=2(S△ACQ+S△PBC)=c2, 同理,ac(cos∠CBA)+ab(cos∠ACB)=a2, ab(cos∠ACB)+bc(cos∠BAC)=b2. 联立三个方程,
bc(cos∠BAC)+ac(cos∠CBA)=c2(1) ac(cos∠CBA)+ab(cos∠ACB)=a2(2) ab(cos∠ACB)+bc(cos∠BAC)=b2(3) 易得余弦定理
方法五:正弦法 ∵
=
=
∴=bsin2B=csin2C=absinAsinB
∴a2+b2-c2sin2A+sin2B-sin2C=absinAsinB∴a2+b2-c2=absinAsinB又∵sin2A=1-cos2A2sin2B=1-cos2B2
(sin2A+sin2B-sin2C)(1)
∴sin2A+sin2B=1-(cos2A+cos2B)=1-cos(A+B)cos(A-B) ΔABC中cos(A+B)=cos(180°-C)=-cosC ∴sin2A+cos2B=1-cosCcos(A-B)(2) (2)带入(1)得
a2+b2-c2= = = = =2abcosC
[1+cosCcos(A-B)-sin2C] [cos2C+cosCcos(A-B)] cosC[cosC+cos(A-B)] cosC[-cos(A+B)+cos(A-B)]
∴c2=a2+b2-2abcosC 同理可证 b2=a2+c2-2accosB a2=c2+b2-2bccosA
方法六:摄影定理法 ∵a=bcosC+ccosB(1) b=acosC+ccosA(2) c=bcosA+acosB(3)
∴(1)×a+(2)×b-(3)×c得 c2=a2+b2-2abcosC 同理可证 b2=a2+c2-2accosB a2=c2+b2-2bccosA
方法七:复数法
如下图,在复平面内作△ABC,则
=
=a(cosB+isinB),
=b[cos(-A)+i sin(-A)],这里C'是平行四边形ACBC'的顶点,
=
+
=
+
。
根据复数加法的几何意义可知,
所以c=a(cosB+isinB)+b[cos(-A)+i sin(-A)] =(acosB+bcosA)+(asinB-bsinA)i。 (*)
共分享92篇相关文档