当前位置:首页 > 新课程北师大版高中数学必修1第三章指数函数与对数单元测试题含解答
Qx?(?1,1),?1?x?0,?1?x?1?x?x?0
1?x又∵函数f(x)?log2的定义域为(?1,1),∴使f(x)?0的x的取值范围为(0,1)
1?x
21、判断函数f(x)?lg解:f(x)?lg?2x2?1?x的奇偶性、单调性.(12分)
??x2?1?x是奇函数,减函数.
2??x?1?x?,f(x)?lg?x?1?x?
∴f(x)?f(?x)?lg?x?1?x??lg?x?1?x??lg?x?1?x??lg1?0 即f(x)??f(?x),∴函数f(x)?lg?x?1?x?是奇函数.
∵x?R,f(?x)?lg22222设x1?x2,x1,x2?R,设u(x)?则f(x1)?lgx2?1?x,
?x12?1?x1,f(x2)?lg??x22?1?x2
?且u(x2)?u(x1)??x22?1?x2???x12?1?x1???x22?1?x12?1??x2?x1?
???x?x?x2?1?x2?1?21?21? ?(x2?x1)??x2?x1?g2222??x2?1?x1?1x2?1?x1?1??x22?x122222∵x2?1?x2≥x2,x1?1?x1≥x1,∴x2?x2?1?0,x1?x1?1?0 ∴u(x2)?u(x1),即f(x2)?f(x1),∴函数f(x)?lg?x2?1?x在定义域内是减函数.
?22、设函数f(x)?log2ax?bx,且f?1??1,f?2??log212. (1)求a,b的值: (2)当x??1,2?时,求f(x)的最大值.
???log2?a?b??1,?a?b?2,?解:(1)由已知得?所以故a?4,b?2. ?2222?a?b?12.??log2?a?b??log212.22??1111????xxx(2)f(x)?log2?4?2??log2??2????,且u?x???2x???在x??1,2?时
2?4?2?4?????是增加的,当x?2时,u?x?有最大值u?x?max为log212.
1?1???22????12.所以f(x)的最大值
2?4?2
共分享92篇相关文档