当前位置:首页 > 35kV变电所电气部分设计 韩三小
太原理工大学继续教育学院毕业设计(论文)纸
图5. 电器主接线方案一图
方案一35kV侧采用的单母线接线,接线简单清晰、设备少、操作方便、便于扩建和采用成套配电装置。10kV采用单母线分段连线,对重要用户可从不同段引出两个回路,当一段母线发生故障,分段断路器自动将故障切除,保证正常母线供电不间断,所以此方案同时兼顾了可靠性,灵活性,经济性的要求。
方案二图:
第14 页
太原理工大学继续教育学院毕业设计(论文)纸
b a 图5.2 电器主接线方案二图
方案二10kV侧通过双母线虽然可以使供电更可靠,调度更加灵活,,但每增加一组母线就使每回路需要增加一组母线隔离开关,当母线故障或检修时,隔离开关作为倒换操作电器,容易误操作。并且,带设计边变电所的负荷均每什么一类、二类负荷,没必要增加投资选择双母线接线。综合考虑:
方案一:35kV侧采用单母线接线,10kV侧采用单母线分段。 方案二:35kV侧采用单母线接线,10kV侧采用双母线接线。
通过比较可以得知还是选方案一比较合适,即35kV侧采用单母线接线,10kV侧采用单母线分段。
第15 页
太原理工大学继续教育学院毕业设计(论文)纸
5 短路电流计算
5.1 概述
5.1.1 产生短路的原因和短路的定义
产生短路的主要原因是电器设备载流部分的绝缘损坏。绝缘损坏的原因多因设备过电压、直接遭受雷击、绝缘材料陈旧、绝缘缺陷未及时发现和消除。此外,如输电线路断线、线路倒杆也能造成短路事故。所谓短路时指相与相之间通过电弧或其它较小阻抗的一种非正常连接,在中性点直接接地系统中或三相四线制系统中,还指单相和多相接地。
5.1.2 短路的种类
三相系统中短路的基本类型有:三相短路、两相短路、单相接地短路、和两相接地短路。三相短路时对称短路,此时三相电流和电压同正常情况一样,即仍然是对称的。只是线路中电流增大、电压降低而已。除了三相短路之外,其它类型的短路皆系不对称短路,此时三相所处的情况不同,各相电流、电压数值不等,其间相角也不同。 运行经验表明:在中性点直接接地的系统中,最常见的短路是单相短路,约占短路故障的65~70%,两相短路约占10~15%,两相接地短路约占10~20%,三相短路约占5%
5.1.3 短路电流计算的目的
1电气主接线比选;2选择导体和电器;3确定中性点接地方式;4计算软导体的短路摇摆;5确定分裂导线间隔棒的间距;6验算接地装置的接触电压和跨步电压;7选择继电保护装置和进行整定计算。
第16 页
太原理工大学继续教育学院毕业设计(论文)纸
5.2 短路电流计算的方法和条件
5.2.1 短路电流计算方法
电力系统供电的工业企业内部发生短路时,由于工业企业内所装置的元件,其容量比较小,而其阻抗较系统阻抗大得多,当这些元件遇到短路情况时,系统母线上的电压变动很小,可以认为电压维持不变,即系统容量为无穷大。所谓无限容量系统是指容量为无限大的电力系统,在该系统中,当发生短路时,母线电业维持不变,短路电流的周期分量不衰减。
在这里进行短路电流计算方法,以无穷大容量电力系统供电作为前提计算的,其步骤如下:
1对各等值网络进行化简,求出计算电抗; 2求出短路电流的标么值; 3归算到各电压等级求出有名值。 5.2.2 短路电流计算条件
1短路电流实用计算中,采用以下假设条件和原则: (1)正常工作时,三相系统对称运行; (2)所有电源的电动势相位角相同;
(3)系统中的同步和异步电机均为理想电机,不考虑电机磁饱和、磁滞、涡流及导体集肤效应等影响,转子结构完全对称,定子三相绕组空间位置相差120度电气角度;
(4)电力系统中的各元件的磁路不饱和,即带铁芯的电气设备电抗值不随电流大小发生变化;
(5)电力系统中所有电源都在额定负荷下运行,其中50%负荷接在高压母线上,50%负荷接在系统侧;
(6)同步电机都具有自动调整励磁装置(包括强行励磁); (7)短路发生在短路电流为最大值的瞬间;
(8)不考虑短路点的电弧阻抗和变压器的励磁电流;
(9)除计算短路电流的衰减时间常数和低压网络的短路电流外,元件的都略去不
第17 页
共分享92篇相关文档