云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 备份2004-2012年考研数学三历年真题word全打印版[精品文档]

备份2004-2012年考研数学三历年真题word全打印版[精品文档]

  • 62 次阅读
  • 3 次下载
  • 2025/5/7 5:00:07

Y P XY P 求(1)P(X=2Y); (2)cov(X

0 1 2 1 31 31 30 1 2 0 4 7 121 31 12?Y,Y)与?XY.

(23)(本题满分10分)

设随机变量X和Y相互独立,且均服从参数为1的指数分布,

V?min(X,Y),U=max(X,Y).

求(1)随机变量V的概率密度; (2)E(U?V).

2011年全国硕士研究生入学统一考试

数学三试题

一、选择题:1~8小题,每小题4分,共32分。下列每题给出的四个选项中,只有一个选项是符合题目要求的。请将所选项前的字母填在答题纸指定位置上。

(1) 已知当x?0时,函数f(x)?3sinx?sin3x与是cxk等价无穷小,则

(A) k?1,c?4 (B) k?1,c??4 (C) k?3,c?4 (D) k?3,c??4

x2f(x)?2f(x3)? (2) 已知f(x)在x?0处可导,且f(0)?0,则limx?0x3(A) ?2f(0) (B) ?f(0) (C) f(0) (D) 0 (3) 设?un?是数列,则下列命题正确的是

'''

(A) 若

?un?1??n收敛,则

?(un?1?2n?1?u2n)收敛

?(B) 若

?(un?1?2n?1?u2n)收敛,则?un收敛

n?1(C) 若

?un?1?n收敛,则

?(un?1?2n?1?u2n)收敛

? (D) 若

?(un?12n?1?u2n)收敛,则?un收敛

n?1??0?0(4) 设I?小关系是

?40ln(sinx)dx,J??4ln(cotx)dx,K??4ln(cosx)dx 则I,J,K的大

(A) I?J?K (B) I?K?J (C) J?I?K (D) K?J?I (5) 设A为3阶矩阵,将A的第2列加到第1列得矩阵B,再交换B的第2行与第3?100??100?????10?,P2??001?,则A? 行得单位矩阵记为P1??1?001??010??????1?1(A)P1P2 (C)P2P1 1P2 (B)P2P1 (D) P(6) 设A为4?3矩阵,?1, ?2 , ?3 是非齐次线性方程组Ax??的3个线性无关的解,k1,k2为任意常数,则Ax??的通解为

?k1(?2??1)

2???3(B) 2?k2(?2??1)

2???3(C) 2?k1(?3??1)?k2(?2??1)

2???3(D) 2?k2(?2??1)?k3(?3??1)

2(A)

(7) 设F1(x),F2(x)为两个分布函数,其相应的概率密度f1(x), f1(x)是连续函数,则必为概率密度的是

(A) f1(x)f2(x) (B)2f2(x)F1(x)

(C) f1(x)F2(x) (D) f1(x)F2(x)?f2(x)F1(x)

?2??3

(8) 设总体X服从参数?(??0)的泊松分布,X1,X1,Xn(n?2)为来自总体的简

1n1n?11单随即样本,则对应的统计量T1??Xi,T2?X?Xn ?in?1i?1nni?1(A)ET1?ET2,DT1?DT2 (B)ET1?ET2,DT1?DT2 (C)ET1?ET2,DT1?DT2 (D) ET1?ET2,DT1?DT2

二、填空题:9~14小题,每小题4分,共24分,请将答案写在答题纸指定位置上. (9) 设f(x)?limx(1?3t),则f(x)?______.

t?0xt'x(10) 设函数z?(1?)y,则dz|(1,1)?______.

y(11) 曲线tan(x?y?(12) 曲线y?的体积______.

T(13) 设二次型f(X1,X2,X3)?xAx的秩为1,A中行元素之和为3,则f在正交变

x?4)?ey在点(0,0)处的切线方程为______.

x2?1,直线x?2及x轴所围成的平面图形绕x轴旋转所成的旋转体

换下x?Qy的标准型为______.

(14) 设二维随机变量(X,Y)服从N(?,?;?,?;0),则E(XY)?______. 三、解答题:15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.

(15) (本题满分10分) 求极限limx?02221?2sinx?x?1. xln(1?x)(16) (本题满分10分)

已知函数f(u,v)具有连续的二阶偏导数,f(1,1)?2是f(u,v)的极值,

?2zz?f?(x?y),f(x,y)?。求|(1,1).

?x?y(17) (本题满分10分)

arcsinx?lnxdx ?x(18) (本题满分10分) 证明4arctanx?x?4??3?0恰有2实根。 3(19) (本题满分10分)

,且f(x)在?0,1?有连续的导数,f(0)?1??fDt',(x?y)dxdy???ft(dxdy)DtDt?{(x,y)|0?x?t,0?y?t,0?x?y?t}(0?t?1),求f(x)的表达式。

(20) (本题满分11分)

TTTT(1,0,1)(0,1,1)(1,3,5)(1,a,1)设3维向量组?1?,?2?,?3?不能由?1?,TT?2?(1,2,3)(1,3,5),?3?线性标出。

求:(Ⅰ)求a;

(Ⅱ)将?1,?2,?3由?1,?2,?3线性表出. (21) (本题满分11分)

?11???11?????已知A为三阶实矩阵,R(A)?2,且A?0000????,

??11??11?????求:(Ⅰ) 求A的特征值与特征向量;

(Ⅱ) 求A (22) (本题满分11分) 已知X,Y的概率分布如下:

X P 220 1 Y -1 P 1/3 0 1/3 1 1/3 1/3 2/3 且P(X?Y)?1,

求:(Ⅰ)(X,Y)的分布;

(Ⅱ)Z?XY的分布; (Ⅲ)?XY.

  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

Y P XY P 求(1)P(X=2Y); (2)cov(X 0 1 2 1 31 31 30 1 2 0 4 7 121 31 12?Y,Y)与?XY. (23)(本题满分10分) 设随机变量X和Y相互独立,且均服从参数为1的指数分布,V?min(X,Y),U=max(X,Y). 求(1)随机变量V的概率密度; (2)E(U?V). 2011年全国硕士研究生入学统一考试 数学三试题 一、选择题:1~8小题,每小题4分,共32分。下列每题给出的四个选项中,只有一个选项是符合题目要求的。请将所选项前的字母填在答题纸指定位置上。 (1) 已知当x?0时,函数f(x)?3sinx?sin3x与是cxk等价无穷小,则 (A) k?

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com